ADVANCED HIGHER MATHEMATICS

PROOF BY INDUCTION

Recall that a mathematical statement is either true or false.

Let p_n be a given statement about the positive integer n.

Example

Let p_n be the statement that $n^2 + 2n$ is divisible by 3.

 p_1 is the statement that $1^2 + 2 \times 1$ is divisible by 3. Since $1^2 + 2 \times 1 = 3$, the statement p_1 is true.

 p_2 is the statement that $2^2 + 2 \times 2$ is divisible by 3. Since $2^2 + 2 \times 2 = 8$, the statement p_2 is false.

Hence the statement p_n is **not** true for all positive integers n.

The method of **proof by induction** can be used to prove that a given statement p_n is true for all positive integers n.

STEP 1

Prove that the statement p_1 is true.

This is known as the **basis** for the proof by induction.

STEP 2

Assume that the statement p_n is true for some positive integer n.

STEP 3

Use the assumption made in STEP 2 to **prove** that the statement p_{n+1} is then also true. This is known as the **inductive step**.

STEP 4

The logic behind the method of proof by induction can be explained as follows.

By following the steps outlined, we have shown that:

- (1) The statement p_1 is true;
- (2) If the statement p_n is true, then the statement p_{n+1} is also true for all positive integers n. This can be written as

$$p_n$$
 true \Rightarrow p_{n+1} true for all positive integers n .

We have proved that the statement p_1 is true, therefore by (2) above, the statement p_2 is also true. This gives rise to the following inductive chain using (2) above:

$$p_1$$
 true \Rightarrow p_2 true;
 p_2 true \Rightarrow p_3 true;
 p_3 true \Rightarrow p_4 true;
and so on.

Thus the statement p_n is true for all positive integers n.

Note that we must prove that the statement p_1 is true to begin this chain of induction.

NOTE

The method of proof by induction can also be used to prove that a given statement p_n is true for all integers $n \ge m$ as follows:

- (1) Prove that the statement p_m is true.
- (2) Assuming that the statement p_n is true for some integer $n \ge m$, prove that the statement p_{n+1} is also true.

When attempting to prove the inductive step that p_{n+1} is true, it is useful to note that

$$\sum_{k=1}^{n+1} f(k) = \sum_{k=1}^{n} f(k) + f(n+1).$$

Prove by induction that $\sum_{k=1}^{n} (2k-1) = n^2$ for all positive integers n.

Solution

Let p_n be the statement that $\sum_{k=1}^{n} (2k-1) = n^2$.

BASIS

 p_1 is the statement that $\sum_{k=1}^{1} (2k-1) = 1^2$.

LHS =
$$\sum_{k=1}^{1} (2k-1) = 2 \times 1 - 1 = 1$$

$$RHS = 1^2 = 1$$

Hence the statement p_1 is true.

ASSUMPTION

Assume that the statement p_n is true for some positive integer n,

i.e. assume that $\sum_{k=1}^{n} (2k-1) = n^2$.

AIM

Prove that the statement p_{n+1} is also true,

i.e. prove that $\sum_{k=1}^{n+1} (2k-1) = (n+1)^2$.

METHOD

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + \{2(n+1)-1\}$$

$$= n^2 + 2(n+1) - 1 \quad \text{[since we have assumed that } p_n \text{ is true]}$$

$$= n^2 + 2n + 2 - 1$$

$$= n^2 + 2n + 1$$

$$= (n+1)(n+1)$$

$$= (n+1)^2$$

Hence the statement p_{n+1} is also true.

CONCLUSION

Prove by induction that $\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$ for all positive integers n.

Solution

Let p_n be the statement that $\sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$.

BASIS

 p_1 is the statement that $\sum_{k=1}^{1} k^2 = \frac{1}{6}(1)(1+1)(2(1)+1)$.

LHS =
$$\sum_{k=1}^{1} k^2 = 1^2 = 1$$

RHS =
$$\frac{1}{6}(1)(1+1)(2(1)+1) = \frac{1}{6}(1)(2)(3) = 1$$

Hence the statement p_1 is true.

ASSUMPTION

Assume that the statement p_n is true for some positive integer n,

i.e. assume that
$$\sum_{k=1}^{n} k^2 = \frac{1}{6} n(n+1)(2n+1)$$
.

<u>AIM</u>

i.e. prove that
$$\sum_{k=1}^{n+1} k^2 = \frac{1}{6} (n+1) \{ (n+1) + 1 \} \{ 2(n+1) + 1 \}$$
$$= \frac{1}{6} (n+1)(n+2)(2n+3)$$

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2$$

$$= \frac{1}{6} n(n+1)(2n+1) + (n+1)^2 \quad \text{[since we have assumed that } p_n \text{ is true]}$$

$$= \frac{1}{6} (n+1) \{ n(2n+1) + 6(n+1) \}$$

$$= \frac{1}{6} (n+1)(2n^2 + n + 6n + 6)$$

$$= \frac{1}{6} (n+1)(2n^2 + 7n + 6)$$

$$= \frac{1}{6} (n+1)(2n+3)(n+2)$$

$$= \frac{1}{6} (n+1)(n+2)(2n+3)$$

Hence the statement p_{n+1} is also true.

CONCLUSION

- (a) Prove by induction that $\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$ for all positive integers n.
- (b) Hence evaluate $\sum_{k=1}^{20} k(k+1)$.

Solution

(a) Let p_n be the statement that $\sum_{k=1}^n k(k+1) = \frac{1}{3}n(n+1)(n+2)$.

BASIS

 p_1 is the statement that $\sum_{k=1}^{1} k(k+1) = \frac{1}{3}(1)(1+1)(1+2)$.

LHS =
$$\sum_{k=1}^{1} k(k+1) = (1)(1+1) = 2$$

RHS =
$$\frac{1}{3}(1)(1+1)(1+2) = \frac{1}{3}(1)(2)(3) = 2$$

Hence the statement p_1 is true.

ASSUMPTION

Assume that the statement p_n is true for some positive integer n,

i.e. assume that
$$\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$$
.

<u>AIM</u>

i.e. prove that
$$\sum_{k=1}^{n+1} k(k+1) = \frac{1}{3}(n+1)\{(n+1)+1\}\{(n+1)+2\}$$
$$= \frac{1}{3}(n+1)(n+2)(n+3)$$

$$\sum_{k=1}^{n+1} k(k+1) = \sum_{k=1}^{n} k(k+1) + (n+1)\{(n+1) + 1\}$$

$$= \frac{1}{3} n(n+1)(n+2) + (n+1)(n+2) \qquad \text{[since we have assumed that}$$

$$p_n \text{ is true]}$$

$$= \frac{1}{3} (n+1)\{n(n+2) + 3(n+2)\}$$

$$= \frac{1}{3} (n+1)(n^2 + 2n + 3n + 6)$$

$$= \frac{1}{3} (n+1)(n^2 + 5n + 6)$$

$$= \frac{1}{3} (n+1)(n+2)(n+3)$$

Hence the statement p_{n+1} is also true.

CONCLUSION

(b)
$$\sum_{k=1}^{20} k(k+1) = \sum_{k=1}^{20} k(k+1) - \sum_{k=1}^{10} k(k+1)$$
Now
$$\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2).$$

$$\sum_{k=1}^{20} k(k+1) = \frac{1}{3}(20)(20+1)(20+2) = \frac{1}{3}(20)(21)(22) = 3080$$

$$\sum_{k=1}^{10} k(k+1) = \frac{1}{3}(10)(10+1)(10+2) = \frac{1}{3}(10)(11)(12) = 440$$
Hence
$$\sum_{k=1}^{20} k(k+1) = 3080 - 440 = 2640.$$

Prove by induction that

$$2+5+8+....+(3n-1)=\frac{1}{2}n(3n+1)$$

for all positive integers n.

Solution

Let p_n be the statement that $2+5+8+....+(3n-1)=\frac{1}{2}n(3n+1)$, i.e. that $\sum_{k=1}^{n}(3k-1)=\frac{1}{2}n(3n+1)$.

BASIS

 p_1 is the statement that $\sum_{k=1}^{1} (3k-1) = \frac{1}{2}(1)(3(1)+1)$.

LHS =
$$\sum_{k=1}^{1} (3k-1) = 3 \times 1 - 1 = 2$$

RHS =
$$\frac{1}{2}(1)(3(1) + 1) = \frac{1}{2}(1)(4) = 2$$

Hence the statement p_1 is true.

ASSUMPTION

Assume that the statement p_n is true for some positive integer n,

i.e. assume that
$$\sum_{k=1}^{n} (3k-1) = \frac{1}{2}n(3n+1)$$
.

<u>AIM</u>

i.e. prove that
$$\sum_{k=1}^{n+1} (3k-1) = \frac{1}{2}(n+1)\{3(n+1)+1\}$$
$$= \frac{1}{2}(n+1)(3n+4)$$

$$\sum_{k=1}^{n+1} (3k-1) = \sum_{k=1}^{n} (3k-1) + \{3(n+1)-1\}$$

$$= \frac{1}{2} n(3n+1) + 3(n+1) - 1 \quad \text{[since we have assumed that } p_n \text{ is true]}$$

$$= \frac{1}{2} n(3n+1) + 3n + 2$$

$$= \frac{1}{2} \{n(3n+1) + 6n + 4\}$$

$$= \frac{1}{2} (3n^2 + n + 6n + 4)$$

$$= \frac{1}{2} (3n^2 + 7n + 4)$$

$$= \frac{1}{2} (3n + 4)(n + 1)$$

$$= \frac{1}{2} (n+1)(3n + 4)$$

Hence the statement p_{n+1} is also true.

CONCLUSION

This completes the proof by induction that the statement p_n is true for all positive integers n.

[Note that it is convenient to express the statement p_n using \sum notation.]

Prove by induction that $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$ for all positive integers n.

Solution

Let p_n be the statement that $\sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1}$.

BASIS

 p_1 is the statement that $\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{1+1}$.

LHS =
$$\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{1(1+1)} = \frac{1}{2}$$

RHS =
$$\frac{1}{1+1} = \frac{1}{2}$$

Hence the statement p_1 is true.

ASSUMPTION

Assume that the statement p_n is true for some positive integer n,

i.e. assume that
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$

<u>AIM</u>

i.e. prove that
$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n+1}{(n+1)+1} = \frac{n+1}{n+2}.$$

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} + \frac{1}{(n+1)\{(n+1)+1\}}$$

$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} \quad \text{[since we have assumed that } p_n \text{ is true]}$$

$$= \frac{n(n+2)}{(n+1)(n+2)} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n(n+2)+1}{(n+1)(n+2)}$$

$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$

$$= \frac{(n+1)(n+1)}{(n+1)(n+2)}$$

$$= \frac{n+1}{n+2}$$

Hence the statement p_{n+1} is also true.

CONCLUSION

This completes the proof by induction that the statement p_n is true for all positive integers n.

[The result $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$ can also be proved directly by expressing $\frac{1}{k(k+1)}$ in partial fractions.

It can be shown that $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$.

Hence
$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \frac{1}{1} - \frac{1}{2} \qquad (k=1)$$
$$+ \frac{1}{2} - \frac{1}{3} \qquad (k=2)$$
$$+ \frac{1}{3} - \frac{1}{4} \qquad (k=3)$$
$$+ \frac{1}{4} - \frac{1}{5} \qquad (k=4)$$
$$+ \dots \dots$$

$$= 1 - \frac{1}{n+1}$$
 [note that the terms cancel in diagonal pairs as shown]

$$= \frac{n+1}{n+1} - \frac{1}{n+1}$$

$$= \frac{n+1-1}{n+1}$$

$$= \frac{n}{n+1}$$
]

Prove by induction that $4^n - 1$ is divisible by 3 for all positive integers n.

Solution

Let p_n be the statement that $4^n - 1$ is divisible by 3.

BASIS

 p_1 is the statement that $4^1 - 1$ is divisible by 3.

Now $4^1 - 1 = 3$, which is divisible by 3, hence the statement p_1 is true.

ASSUMPTION

Assume that the statement p_n is true for some positive integer n, i.e. assume that $4^n - 1$ is divisible by 3.

AIM

Prove that the statement p_{n+1} is also true, i.e. prove that $4^{n+1} - 1$ is divisible by 3.

METHOD

$$4^{n+1} - 1 = 4 \cdot 4^{n} - 1$$

$$= 4\{(4^{n} - 1) + 1\} - 1$$

$$= 4(4^{n} - 1) + 4 - 1$$

$$= 4(4^{n} - 1) + 3$$

Now $4^n - 1$ is divisible by 3 (since we have assumed that p_n is true) and 3 is divisible by 3, hence $4^{n+1} - 1$ is divisible by 3.

Hence the statement p_{n+1} is also true.

CONCLUSION

[The inductive step can also be proved as follows:

$$4^{n+1} - 1 = 4 \cdot 4^{n} - 1$$

$$= (3+1)4^{n} - 1$$

$$= 3 \cdot 4^{n} + 4^{n} - 1$$

$$= 3 \cdot 4^{n} + (4^{n} - 1)$$

Now $3 \cdot 4^n$ is divisible by 3 and $4^n - 1$ is divisible by 3 (since we have assumed that p_n is true), hence $4^{n+1} - 1$ is divisible by 3.]

Let
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$$
.

Prove by induction that $A^n = \begin{pmatrix} n+1 & n \\ -n & 1-n \end{pmatrix}$ for all positive integers n.

Solution

Let p_n be the statement that $A^n = \begin{pmatrix} n+1 & n \\ -n & 1-n \end{pmatrix}$.

BASIS

$$p_1$$
 is the statement that $A^1 = \begin{pmatrix} 1+1 & 1 \\ -1 & 1-1 \end{pmatrix}$.

$$LHS = A^1 = A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}.$$

RHS =
$$\begin{pmatrix} 1+1 & 1 \\ -1 & 1-1 \end{pmatrix}$$
 = $\begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$

Hence the statement p_1 is true.

ASSUMPTION

Assume that the statement p_n is true for some positive integer n,

i.e. assume that
$$A^n = \begin{pmatrix} n+1 & n \\ -n & 1-n \end{pmatrix}$$
.

AIM

i.e. prove that
$$A^{n+1} = \begin{pmatrix} (n+1)+1 & n+1 \\ -(n+1) & 1-(n+1) \end{pmatrix} = \begin{pmatrix} n+2 & n+1 \\ -n-1 & -n \end{pmatrix}$$
.

$$A^{n+1} = AA^{n} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} n+1 & n \\ -n & 1-n \end{pmatrix}$$
 [since we have assumed that p_{n} is true]
$$= \begin{pmatrix} 2(n+1)+1(-n) & 2n+1(1-n) \\ -1(n+1)+0(-n) & -1n+0(1-n) \end{pmatrix}$$

$$= \begin{pmatrix} 2n+2-n & 2n+1-n \\ -n-1 & -n \end{pmatrix}$$

$$= \begin{pmatrix} n+2 & n+1 \\ -n-1 & -n \end{pmatrix}$$

Hence the statement p_{n+1} is also true.

CONCLUSION

Let
$$z = \cos \theta + i \sin \theta$$
.

Prove by induction that $z^n = \cos n\theta + i \sin n\theta$ for all positive integers n.

[Recall that this is de Moivre's theorem.]

Solution

Let p_n be the statement that $z^n = \cos n\theta + i \sin n\theta$.

BASIS

 p_1 is the statement that $z^1 = \cos \theta + i \sin \theta$.

LHS =
$$z^1 = z = \cos \theta + i \sin \theta$$

RHS =
$$\cos 1\theta + i \sin 1\theta = \cos \theta + i \sin \theta$$

Hence the statement p_1 is true.

ASSUMPTION

Assume that the statement p_n is true for some positive integer n, i.e. assume that $z^n = \cos n\theta + i \sin n\theta$.

AIM

Prove that the statement p_{n+1} is also true, i.e. prove that $z^{n+1} = \cos(n+1)\theta + i\sin(n+1)\theta$.

METHOD

$$z^{n+1} = zz^{n} = (\cos\theta + i\sin\theta)(\cos n\theta + i\sin n\theta) \quad \text{[since we have assumed that } p_{n} \text{ is true]}$$

$$= \cos\theta\cos n\theta + i\sin\theta\cos n\theta + i\cos\theta\sin n\theta + i^{2}\sin\theta\sin n\theta$$

$$= \cos\theta\cos n\theta - \sin\theta\sin n\theta + i(\sin\theta\cos n\theta + \cos\theta\sin n\theta)$$

$$= \cos(\theta + n\theta) + i\sin(\theta + n\theta)$$

$$= \cos(n+1)\theta + i\sin(n+1)\theta$$

Hence the statement p_{n+1} is also true.

CONCLUSION

Prove by induction that $\frac{d^n}{dx^n}(xe^x) = (x+n)e^x$ for all positive integers n.

Solution

Let p_n be the statement that $\frac{d^n}{dx^n}(xe^x) = (x+n)e^x$.

BASIS

 p_1 is the statement that $\frac{d^1}{dx^1}(xe^x) = (x+1)e^x$.

LHS =
$$\frac{d^{1}}{dx^{1}}(xe^{x}) = \frac{d}{dx}(xe^{x})$$

= $x \cdot \frac{d}{dx}(e^{x}) + e^{x} \cdot \frac{d}{dx}(x)$ [using the product rule]
= $x \cdot e^{x} + e^{x} \cdot 1$
= $(x+1)e^{x}$
= RHS

Hence the statement p_1 is true.

ASSUMPTION

Assume that the statement p_n is true for some positive integer n,

i.e. assume that
$$\frac{d^n}{dx^n}(xe^x) = (x+n)e^x$$
.

<u>AIM</u>

i.e. prove that
$$\frac{d^{n+1}}{dx^{n+1}}(xe^x) = (x+n+1)e^x$$
.

$$\frac{d^{n+1}}{dx^{n+1}}(xe^x) = \frac{d}{dx} \left\{ \frac{d^n}{dx^n}(xe^x) \right\}$$

$$= \frac{d}{dx} \left\{ (x+n)e^x \right\} \quad \text{[since we have assumed that } p_n \text{ is true]}$$

$$= (x+n) \cdot \frac{d}{dx}(e^x) + e^x \cdot \frac{d}{dx}(x+n) \quad \text{[using the product rule]}$$

$$= (x+n) \cdot e^x + e^x \cdot 1$$

$$= (x+n+1)e^x$$

Hence the statement p_{n+1} is also true.

CONCLUSION