Prelim Examination 2014 / 2015 (Assessing Units 1 & 2)

MATHEMATICS

Advanced Higher Grade

Time allowed - 3 hours

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer all questions
- 3. Full credit will only be given where the solution contains appropriate working

Answer all the questions.

1. (a) Given
$$f(x) = x^3 \tan(2x)$$
, where $0 < x < \frac{\pi}{4}$, obtain $f'(x)$.

(b) For
$$y = \frac{1+x^2}{1+x}$$
, where $x \neq -1$, determine $\frac{dy}{dx}$ in simplified form. 3

2. Find
$$\int \frac{12x^3 - 6x}{x^4 - x^2 + 1} dx$$
 3

3. Identify the locus in the complex plane given by
$$|z + i| = 2$$
.

4. The system of equations

has no solution.

Use Gaussian elimination to find the value(s) of *t*.

- 5. Determine whether the function $f(x) = x^4 \sin 2x$ is odd, even or neither. Justify your answer.
- 6. Write down the general term of the binomial expansion of $\left(2x^2 \frac{4}{y^2}\right)^6$.

Hence use your expression to find the coefficient of $\frac{x^4}{y^8}$. 5

7. Use integration by parts to obtain $\int 8x^2 \sin 4x \, dx$.

5

3

5

8. A curve is defined parametrically, for all t, by the equations

$$x = 2t + \frac{1}{2}t^2$$
, $y = \frac{1}{3}t^3 - 3t$.

Obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ as functions of t.

Find the values of t at which the curve has stationary points and determine their nature.

Show that the curve has exactly two points of inflexion.

9. A curve is defined implicitly by the equation $e^{xy} = e^{4x} - e^{5y}$.

Find an equation, in terms of x and y, for
$$\frac{dy}{dx}$$
. 4

Hence find the gradient of the tangent to the curve at the point (1, 0).

10. Express
$$z = (1+3i)(2-i) - \frac{2-2i}{1+i}$$
 in the form $a+bi$ where a and b are real numbers. 3

11. Use induction to prove that
$$\sum_{r=1}^{n} r^3 = \left[\frac{n}{2}(n+1)\right]^2$$
 for all integers $n \ge 1$.

12. (*a*) The first term of an arithmetic sequence is 54, the last term is 19 and the sum of the terms of the sequence is 219.

Find the number of terms and the common difference.

(b) The sum of the first and second terms of a geometric sequence is 1500, and the sum of the third and fourth terms is 375.

Find the two possible values of the common ratio and the corresponding values of the first term.

Find the sum to five terms of both of the series.

4

5

3

2

2

13. (a) Express
$$\frac{1}{4-y^2}$$
 in the form $\frac{A}{2-y} + \frac{B}{2+y}$, where A and B are constants. 2

(b) Find
$$\int \sec^2 x \, dx$$
.

(c) Hence find the particular solution of the equation $\frac{dy}{dx} = \frac{8 - 2y^2}{\cos^2 x}$, given that $y(0) = \frac{2}{3}$.

14.Show that
$$z = 1 + 2i$$
 is a root of the equation $z^4 - 2z^3 + 9z^2 - 8z + 20 = 0.$ 2Write down a second root of the equation.1Find the other two roots of the equation.3

15. Given that $y = 6^x \sqrt{1-2x}$, $(x \ge \frac{1}{2})$, use logarithmic differentiation to find a formula for $\frac{dy}{dx}$ in terms of x.

16. Use the substitution $x = \frac{2}{5}\sin\theta$ to show that

$$\int_{0}^{\frac{1}{5}} \frac{x}{\sqrt{4-25x^{2}}} \, dx = \frac{2-\sqrt{3}}{25}.$$
 6

17. Part of the graph of the function $f(x) = \frac{x^2 + 12}{x - t}, x \neq t$, is shown below.

The graph has a vertical asymptote with equation x = 2, a non-vertical asymptote l and crosses the *y*-axis at the point *P*. The points *Q* and *R* are the stationary points of the graph.

(<i>a</i>)	Write down the value of <i>t</i> .	1
(<i>b</i>)	Determine algebraically the equation of the non-vertical asymptote, <i>l</i> .	3
(<i>c</i>)	Write down the coordinates of the point P where the graph of f crosses the y-axis.	1
(<i>d</i>)	Use calculus to find the coordinates and nature of the stationary points Q and R .	5
(<i>e</i>)	State the coordinates of the stationary points of the graph with equation	

$$h(x) = 2|f(x)| - 1.$$
 2

[END OF QUESTION PAPER]

Marking Scheme – Advanced Higher Grade 2014 / 2015 Prelim (Assessing Units 1 & 2)

	Give one mark for each • Illustrations for awarding	g each mark
1		-
2005	(a) $f(x) = x^3 \tan 2x$	
Q1	$f'(x) = 3x^2 \tan 2x + x^3 (2\sec^2 2x)$	1M, 1, 1
	(b) $y = \frac{1 + x^2}{1 + x}$	
	$\frac{dy}{dx} = \frac{2x(1+x) - (1+x^2).1}{(1+x)^2}$	1M,1
		1111,1
	$=\frac{x^2+2x-1}{(1+x)^2}$	1
	Alternative 1	
	$y = \frac{1+x^2}{1+x} = x - 1 + \frac{2}{1+x}$	M1,1
	$\frac{dy}{dx} = 1 - \frac{2}{(1+x)^2} \text{ or } 1 - 2(1+x)^{-2}$	1
	$dx = (1 + x)^{2} \text{ or } 1 = 2(1 + x)^{2}$ Alternative 2	-
	$y = \frac{1+x^2}{1+x} = (1+x^2)(1+x)^{-1}$	
	$1 + \lambda$	
	$\frac{dy}{dx} = 2x(1 + x)^{-1} + (1 + x^2)(-1)(1 + x)^2$	M1,1
	$\frac{dy}{dx} = \frac{2x}{(1+x)} - \frac{1+x^2}{(1+x)^2}$	1
	$dx = (1 + x) - (1 + x)^2$	
2		
2006	$d_{(4, 2, 4)}$ (3.2)	
Q6	$\frac{d}{dx}(x^4 - x^2 + 1) = 4x^3 - 2x$	1
	Thus	
	$\int \frac{12x^3 - 6x}{x^4 - x^2 + 1} dx = 3 \int \frac{4x^3 - 2x}{x^4 - x^2 + 1} dx$	1
	$= 3 \ln (x^4 - x^2 + 1) + c$	1
		*
3		
2003	Let $z = x + iy$.	
2003 A9	z + i = (x + iy) + i = x + (1 + y)i	1
	$\therefore z + i = \sqrt{x^2 + (1 + y)^2}$	1
	$\therefore x^2 + (1 + y)^2 = 4$	
	which is a circle, centre $(0, -1)$ radius 2.	1
	(The centre could be given as $-i$.)	

	Give one mark for each •	Illustrations for awarding each mark	
4	ans: $t = \pm \sqrt{2}$ 5 marks• correct augmented matrix	$\bullet \begin{pmatrix} -2 & 3 & 1 & 7 \\ 1 & -2 & -2 & -3 \\ 2 & -2 & t^2 & 10 \end{pmatrix}$	
	• correct modified system	• (E.g.) $\begin{pmatrix} 1 & -2 & -2 & -3 \\ 0 & -1 & -3 & 1 \\ 0 & 2 & t^2 + 4 & 16 \end{pmatrix}$	
	• correct upper triangular form	$\bullet \begin{pmatrix} 1 & -2 & -2 & -3 \\ 0 & -1 & -3 & 1 \\ 0 & 0 & t^2 - 2 & 18 \end{pmatrix}$	
	 correct equation correct answer	• $t^2 - 2 = 0$ • $t = \pm \sqrt{2}$ (both values required)	
5 2010	$f(x) = x^4 \sin 2x \operatorname{so} $ $f(-x) = (-x)^4 \sin^2 x \operatorname{so} x^4 \sin^2 x^4 \operatorname{so} x^4 \sin^2 x^4 \operatorname{so} x^4 \sin^2 x^4 \operatorname{so} x^4 $	$(x)^4 \sin(-2x)$ 1	
Q10		$4 \sin 2x$ 1	
	= -x = -f		
	= -j So $f(x) = x^4 \sin 2x$ is an odd function.	1	
	Note: a sketch given with a comment and correct answer, give full marks. A sketch without a comment, gets a maximum of two marks.		
6	ans: 12,288 5 marks		
	• correct general term	• $\binom{6}{r} (2x^2y)^{6-r} \left(\frac{4}{xy^2}\right)^r$ or $\binom{6}{r} (2x^2y)^r \left(\frac{4}{xy^2}\right)^{6-r}$	
	 simplifies correctly simplifies correctly correct value for r correct answer 	(Ignore appearance of $\sum_{r=0}^{6} \dots$ • $(2^{6-r} \cdot 4^r or 2^{6+r})$ or $(2^r \cdot 4^{6-r} or 2^{12-r})$ • $x^{12-3r} y^{6-3r}$ or $x^{3r-6} y^{3r-12}$ • $r = 5$ or $r = 1$ • 12,288 (Ignore appearance of $(xy^3)^{-3}$ or $x^{-3} y^{-9}$)	

	Give one mark for each ●	Illustratio	ons for awarding each mark
7			
2008			
Q7	$\int 8x^2 \sin 4x dx = 8x^2 \int \sin 4x dx$	$=\int 16x ($	$\int \sin 4x dx \bigg) dx \qquad 1 \mathbf{M, 1}$
	$= 8x^2 \left(\frac{-1}{4}\cos 4x\right)$	$-\int 16x$	$\times \frac{-1}{4} \cos 4x dx$ 1
	$= -2x^2 \cos 4x + $	$4\left[x\int\cos^{2}\theta\right]$	$4xdx-\int\frac{1}{4}\sin4xdx\bigg]$
	$= -2x^2 \cos 4x + $	$x \sin 4x +$	$+\frac{1}{4}\cos 4x + c$ 1
8			
0			I
	$x = 2t + \frac{1}{2}t^2 \implies \frac{dx}{dt} = 2 + \frac{1}{2}t^2$		
	$y = \frac{1}{3}t^3 - 3t \qquad \Rightarrow \qquad \frac{dy}{dt} = t^2 - t^$	3 1	
	$\frac{dy}{dx} = \frac{t^2 - 3}{2 + t}$	1	
	$\frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{2t(2+t) - (t^2 - 3)}{(2+t)^2} = \frac{t^2 + 4t + t^2}{(2+t)^2}$	$\frac{3}{2}$ 1	
	$\frac{d^2y}{dx^2} = \frac{t^2 + 4t + 3}{(2+t)^2} \times \frac{1}{2+t} = \frac{t^2 + 4t + 3}{(2+t)^3}$	1	
	Stationary points when $\frac{dy}{dx} = 0$, i.e.		
	$t^2 - 3 = 0 \implies t = \pm \sqrt{3}$	1	
	When $t = \sqrt{3}$, $\frac{d^2y}{dx^2} = \frac{3 + 4\sqrt{3} + 3}{(2 + \sqrt{3})^3} > 0$ which gives a minimum.	1	no marks for using a nature table
	When $t = -\sqrt{3}$, $\frac{d^2y}{dx^2} = \frac{3 - 4\sqrt{3} + 3}{(2 - \sqrt{3})^3} < 0$ which gives a maximum.	1	no marks for using a nature table
	At a point of inflexion, $\frac{d^2y}{dx^2} = 0$.	1	
	In this case, that means		
	$t^{2} + 4t + 3 = (t+1)(t+3) = 0$		
	and this has exactly two roots.	1	need to show 2 values exist
	Note that this is a slimmed-down version of	r	
	the complete story of points of inflexion.		I
	and this has exactly two roots. Note that this is a slimmed-down version of	-	need to show 2 values exist

	Give one mark for each •	Illustrations for awarding each mark
9	ans: $\frac{dy}{dx} = \frac{4e^{4x} - ye^{xy}}{xe^{xy} + 5e^{5y}}$ 4 marks	
	• starts correctly	• $e^{xy}\left(\frac{d}{dx}(xy)\right) = \dots$
	• continues correctly	• = $e^{4x}\left(\frac{d}{dx}(4x)\right) - e^{5y}\left(\frac{d}{dx}(5y)\right)$
	• differentiates correctly	• $ye^{xy} + xe^{xy}\frac{dy}{dx} = 4e^{4x} - 5e^{5y}\frac{dy}{dx}$
	• simplifies correctly	• $\frac{dy}{dx} = \frac{4e^{4x} - ye^{xy}}{xe^{xy} + 5e^{5y}}$
	ans: $\frac{2}{3}e^4 \cong 36 \cdot 4$ 2 marks	
	• substitutes correctly	• $\frac{4e^4 - 0 \cdot e^0}{1 \cdot e^0 + 5e^0}$ • $\frac{2}{3}e^4 \cong 36 \cdot 4$
	• correct answer	• $\frac{2}{3}e^4 \cong 36 \cdot 4$
10	ans: 5+7 <i>i</i> 3 marks	
	• knows how to deal with quotient	• $\frac{2-2i}{1+i} \cdot \frac{1-i}{1-i}$
	finds product correctlycorrect answer	 5+5i 5+7i
		• 5+11
11	ans: Proof 4 marks	
	• starts correctly: proves result is true for n = 1	• $LHS = RHS = 1 \implies$ True for n = 1
	• states correct assumption for n = k	• Assume for n = k; $\sum_{k=3}^{k} \left[k \left(l + 1 \right) \right]^{2}$
		i.e. that $\sum_{r=1}^{k} r^3 = \left[\frac{k}{2}(k+1)\right]^2$
	• continues proof correctly	$\sum_{k=1}^{k+1} r^3 = \sum_{k=1}^{k} r^2 + (k+1)^3$
		$ = \left[\frac{k}{2}(k+1)\right]^{2} + (k+1)^{3} = \left(\frac{k+1}{2}\right)^{2}(k^{2} + 4(k+1)) $
		$= \left(\frac{k+1}{2}\right)^{2} (k+2)^{2} = \left[\frac{k+1}{2}(k+2)\right]^{2}$
	• completes proof correctly	• Since result is true for $n = 1$ and, since (result is true for $n = k$) \Rightarrow (result is true for $n = k + 1$), the result is true for all integers $n \ge 1$

	Give one mark for each •	Illustrations for awarding each mark
12 (a)	ans: $n = 6 \& d = -7$ 3 marks	
	• starts to substitute correctly into correct formula	• $219 = \frac{n}{2}(108 + (n-1)d)$
	• correct number of terms	• $n = 6$
	correct common difference	• <i>d</i> = -7
12 (b)	ans: $r = \frac{1}{2} \Rightarrow a = 1000 \& r = -\frac{1}{2} \Rightarrow a = 3000$	
	$r = \frac{1}{2} \Longrightarrow S_5 = \frac{3875}{2} \& r = -\frac{1}{2} \Longrightarrow S_5 = \frac{4125}{2}$ 6 marks	
	• starts process correctly	• $a + ar = 1500 \& ar^2 + ar^3 = 375$
	 continues process correctly 	• $\frac{1500}{a} = \frac{375}{ar^2}$
	• correct values for <i>r</i>	• $r^2 = \frac{375}{1000} \Longrightarrow r = \frac{1}{2} \& r = -\frac{1}{2}$
	• correct values for <i>a</i>	• $a = 1000 \& a = 3000$
	• finds sum correctly	• $r = \frac{1}{2} \Longrightarrow S_5 = \frac{3875}{2}$
	• finds sum correctly	• $r = -\frac{1}{2} \Longrightarrow S_5 = \frac{4125}{2}$

	Give one mark for each •	Illustrations for awarding each mark
13 (a)	ans: $\frac{1}{4(2-y)} + \frac{1}{4(2+y)}$ 2 marks	
	• correct answer	• $A = \frac{1}{4}$ • $B = \frac{1}{4}$
	• correct answer	• $B = \frac{1}{4}$
13 (b)	ans: $\tan x + C$ 1 mark	
	• correct answer	• $\tan x + C$ (accept $\tan x$)
13 (c)	ans: $y = \frac{4e^{\tan x} - 2}{1 + 2e^{\tan x}}$ or equivalent 7 marks	
	• rearranges correctly	• $\frac{1}{2}\int \frac{dy}{4-y^2} = \int \sec^2 x dx$
	• substitutes correctly	• $\frac{1}{2}\int \left(\frac{1}{4(2-y)} + \frac{1}{4(2+y)}\right) dy = \int \sec^2 x dx$
	• integrates correctly	• $\frac{1}{8}(-\ln 2-y +\ln 2+y) = \tan x + C$
	• rearranges & starts to solve correctly	• $e^{\ln\left \frac{2+y}{2-y}\right } = e^{8\tan x+c}$
	• correct general solution	• $y = \frac{2Ae^{8\tan x} - 2}{1 + Ae^{8\tan x}}$
	substitutes & starts to evaluate correctlysolves correctly	• $\frac{2}{3} = \frac{2Ae^0 - 2}{1 + Ae^0}$ • $A = 2$

	Give one mark for each •	Illustrations for awarding each mark
14	ans: Proof2 marks	
	• starts to show that $1+2i$ is a root correctly	• $1+2i \begin{vmatrix} 1 & -2 & 9 & -8 & 20 \\ 1+2i & -5 & 4+8i & -20 \end{vmatrix}$
	• completes proof	(or equivalent) = 0
	ans: $1-2i$ 1 mark	
	• correct answer	• 1-2 <i>i</i>
	ans: $\pm 2i$ 3 marks	
	• starts correctly	• $1-2i \overline{\smash{\big)}} \begin{array}{cccc} 1 & 0 & 4 & 0 \\ \hline 1 & -1+2i & 4 & -4+8i \\ 1-2i & 0 & 4-8i \end{array}$
		(or equivalent) • $z^2 + 4 = 0$
	continues correctly	• $z + 4 = 0$ • $z = \pm 2i$
15	• finds correct roots ans: $\frac{dy}{dx} = 6^x \sqrt{1 - 2x} \left(\ln 6 - \frac{1}{1 - 2x} \right)$ 4 marks	
	• starts correctly	• $\ln y = \ln \left(6^x \sqrt{1 - 2x} \right)$
	manipulates correctly	• $\ln y = x \ln 6 + \frac{1}{2} \ln(1 - 2x)$
	• differentiates correctly	• $\frac{1}{y}\frac{dy}{dx} = \ln 6 + \frac{1}{2} \cdot \frac{1}{1 - 2x} \cdot (-2)$
	• correct answer	• $\frac{dy}{dx} = 6^x \sqrt{1 - 2x} \left(\ln 6 - \frac{1}{1 - 2x} \right)$
16	ans: Proof 6 marks	
	• substitutes correctly	$\frac{2}{5}\sin\theta\cdot\frac{2}{5}\cos\theta$
	- substitutes correctly	$\int \frac{5 \sin \theta}{\sqrt{4 - 25 \left(\frac{2}{5} \sin \theta\right)^2}} d\theta$
	changes limits correctly	$\int_{0}^{\frac{\pi}{6}} \dots$
	• simplifies correctly	$\frac{4}{25} \cdot \frac{1}{2} \int \frac{\sin \theta \cos \theta}{\sqrt{1 - \sin^2 \theta}} d\theta = \frac{2}{25} \int \sin \theta d\theta$
	• integrates correctly	•
	• substitutes correctly	$ \frac{\frac{2}{25} \left[-\cos\theta\right]}{\frac{2}{25} \left(-\cos\frac{\pi}{6} + \cos\theta\right)} $
	• simplifies correctly	$\frac{2}{25}\left(-\frac{\sqrt{3}}{2}+1\right) = \frac{2-\sqrt{3}}{25}$

	Give one mark for each •	Illustrations for awarding each mark
17(<i>a</i>)	ans: $t = 2$ 1 mark	
	• correct value	• <i>t</i> = 2
17(<i>b</i>)	ans: $y = x + 2$ 3 marks	$\overline{\sum}$
	 correct method continues correctly correct answer 	• $x-2\overline{\smash{\big)} x^2 + 12}$ • $y = x + 2 + \frac{16}{x-2}$ • $y = x + 2$
17(<i>c</i>)	ans: $P(0,-6)$ 1 mark	
	correct coordinates	• (0,-6)
17(<i>d</i>)	ans: $Q(-2,-4) \rightarrow MaximumT.P. \&$ $R(6,12) \rightarrow MinimumT.P.$	
	 5 marks differentiates correctly solves f'(x) = 0 correctly correct y-coordinates 	• $f'(x) = 1 - \frac{16}{(x-2)^2}$ • $x = -2,6$ • $Q(-2,-4) \& R(6,12)$
	correct formula for second derivativecorrect nature of both points	• $f''(x) = \frac{32}{(x-2)^3}$ • $f''(-2) < 0 \Rightarrow MaximumT.P. \& f''(6) > 0 \Rightarrow MinimumT.P.$
17(<i>e</i>)	ans: (-2,7),(6,23) 2 marks	
	 correct point correct point	• (-2,7) • (6,23)

TOTAL MARKS = 100