Prelim Examination 2015/2016 (Assessing all 3 Units)

MATHEMATICS

CFE Advanced Higher Grade

Time allowed - 3 hours

Total marks - 100

Attempt ALL questions.

You may use a calculator.

Full credit will be given only to solutions which contain appropriate working. State the units for your answer where appropriate.

Write your answers clearly in the answer booklet provided. In the answer booklet, you must clearly identify the question number you are attempting. Use **blue** or **black** ink.

Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Standard	l derivatives
f(x)	f'(x)
$\sin^{-1}x$	$\frac{1}{\sqrt{1-x^2}}$
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$
tan x	$\sec^2 x$
$\ln x, x > 0$	$\frac{1}{x}$
e ^x	e ^x

Standard integrals				
f(x)	$\int f(x)dx$			
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\left(\frac{x}{a}\right) + c$			
$\frac{1}{a^2 + x^2}$	$\frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$			
$\sec^2(ax)$	$\frac{1}{a}\tan(ax)+c$			
e^{ax}	$\frac{1}{a}e^{ax}+c$			

Summations

(Arithmetic series)

 $S_n = \frac{1}{2}n[2a + (n-1)d]$ $S_n = \frac{a(1-r^n)}{1-r}$

(Geometric series)

$$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}, \ \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}, \ \sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$$

Binomial theorem

$$(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$$
 where $\binom{n}{r} = {}^n C_r = \frac{n!}{r!(n-r)!}$

Maclaurin expansion

$$f(x) = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \frac{f'''(0)x^3}{3!} + \frac{f^{i\nu}(0)x^4}{4!} + \dots$$

De Moivre's theorem

 $[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$

Vector product

$$\mathbf{a} \times \mathbf{b} = |a||b|\sin\theta \hat{n} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = i \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - j \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + k \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$

Answer all the questions.

1. Find the term in
$$a^{-3}$$
 in the expansion of $\left(4a^2 + \frac{3}{a}\right)^6$. **4**

2. Given the equation $z + 2i\bar{z} = 8 + 7i$, express z in the form a + ib. 4

3. (a) Differentiate and simplify
$$4 \tan^{-1} \sqrt{1-x}$$
, where $x < 1$.

(b) Use the substitution
$$u = \cos \theta - 1$$
 to evaluate $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sin \theta}{(\cos \theta - 1)^4} d\theta$ 5

4. (a) Prove that
$$\sqrt{2}$$
 is irrational.

- (b) Consider the following two statements S and T:
- S: If p and q are two odd prime numbers then p + q is not prime.
- T: If p and q are two odd prime numbers then p q is not prime.

For each of S and T, give a proof if it is true, or give a counter example if it is false. 3

5. Given that -2+5i is a root of the equation $z^3 + 6z^2 + 37z + 58 = 0$, find the other roots.

3

6. The radius of a sphere is increasing at a rate of 3 cm/s.

Find, in terms of π , the rate at which the volume of the sphere is increasing when the radius is 5cm.

[You may assume that the volume of a sphere is given by: $V = \frac{4}{3}\pi r^3$.] 4

4

- 7. Write down the 2×2 matrix *R* representing reflection in the line y = -x. (a)
 - Write down the 2×2 matrix S representing an anticlockwise rotation of 90° (b) about the origin.
- A curve is defined by the parametric equations 8.
 - x = 8t•
 - $y = t^3 27t + 50$ for all *t*. •

Find the coordinates of the stationary points of this curve and, by considering $\frac{d^2y}{dx^2}$, determine their nature. 7

9. Let:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & -1 & -1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 4 & -2 & -2 \\ -3 & 2 & 1 \end{pmatrix}$$

Show that AB = kI for some constant k, where I is the 3x3 identity matrix. Hence obtain:

- The inverse matrix A⁻¹ i)
- The matrix A²B ii)

4

1

1

A function is defined implicitly by $e^{2x+3y} = x^2 - \ln(xy^3)$ 10.

Find, in terms of x and y, a formula for $\frac{dy}{dx}$.

4

11. Solve the differential equation:

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^x$$
1, when x = 0.

given that y = 2 and $\frac{dy}{dx} = 1$, when x = 0.

12. The function *f* is defined by $f(x) = ax^3 + bx^2 + cx + 6$ where *a*, *b* and *c* are constants.

It is known that the graph of f passes through the point (1, 7) and has a stationary point at (-1, 7).

(a) Deduce that *a*, *b* and *c* must satisfy the system of equations

$$a + b + c = 1$$

 $3a - 2b + c = 0$
 $a - b + c = -1.$
4

5

4

- (b) Use Gaussian elimination to find the values of *a*, *b* and *c*.
- **13.** (a) Show that

$$\frac{1}{\csc x \csc 2x} = 2\cos x \sin^2 x.$$

(b) Use integration by parts to show that

$$\int \cos x \sin^2 x dx = \frac{1}{3} \sin^3 x + c.$$
 2

(c) Hence, or otherwise, find the particular solution of the differential equation

$$\frac{dy}{dx} = e^x \operatorname{cosec} 2 \operatorname{ycosecy},$$

given that
$$y = \frac{\pi}{6}$$
 when $x = 0$.

14. Evaluate
$$\int_{-1}^{3} \frac{2x^3 - 3x^2 - 3}{x^2(x^2 + 1)} dx$$
. 8

15. Water is being heated in a kettle. At time t seconds, the temperature of the water is $T \,{}^{0}C$.

The rate of increase of the temperature of the water at any time t is given by the differential equation

$$\frac{dT}{dt} = k(130 - T), \ T \le 100$$

where k is a positive constant.

(a) Given that T = 25 when t = 0, show that

$$T = -105e^{-kt} + 130.$$

(b) When the temperature of the water reaches 100 $^{\circ}$ C, the kettle switches off.

Given that k = 0.009, find the time, to the nearest second, when the kettle switches off. 2

16. Let $z = \cos \theta + i \sin \theta$.

(a) Use de Moivre's theorem to express z^5 in terms of 5θ . 1

(b) Use the binomial theorem to express z^5 in terms of $\sin \theta$ and $\cos \theta$. **2**

(c) Hence show that

(i)
$$\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$$
 2

(ii)
$$\sin 5\theta = 16\sin^5 \theta - 20\sin^3 \theta + 5\sin \theta.$$
 2

(d) Use your answers to (c)(i) and (c)(ii) to show that

$$\cot 5\theta = \frac{1 - 10\tan^2\theta + 5\tan^4\theta}{\tan^5\theta - 10\tan^3\theta + 5\tan\theta}.$$

[END OF QUESTION PAPER]

Marking Scheme - CFE Advanced Higher Grade 2015/2016 Prelim (Assessing all 3 Units)

	Give one mark for each •	Illustrations for awarding each mark
1	ans: $5832a^{-3}$ 4 marks	
		$(6)_{(4a^2)^{6-r}}(3)^r$
	• finds correct general term	$\left(r \right)^{(+a)} \left(\frac{-a}{a} \right)$
	• simplifies to find correct expression for	• a^{12-3r}
	• solves for r correctly	• <i>r</i> = 5
	 finds correct term 	• $5832a^{-3}$
2	Part Marks Level Calc. Content	Answer U2 OC3
2	4 C CN A16, A17	2005 Q9
	Let $z = a + ib$ so $z = a - ib$	I
	z + 2iz	$z = 8 + \pi$
	a + ib + 2ia + 2b	b = 8 + /i 1
	a + 2b	b = 8
	2a + b	b = 7 M1
	3a	a = 6
	а	a = 2; b = 3
	z	z = 2 + 3i. 1
3(a)	ans: $\frac{-2}{(2-x)\sqrt{1-x}}$ 3 marks	
	• differentiates tan ⁻¹ correctly	• $\dots \frac{1}{1+\sqrt{1-x^2}} \dots$
	continues correctly	• $4\frac{1}{2}(1-x)^{-\frac{1}{2}}(-1)$
	 simplifies correctly 	• $\frac{-2}{(2-x)\sqrt{1-x}}$
3(b)	ans: $\frac{7}{3}$ 5 marks	
	starts correctly	• $du = -\sin\theta d\theta$
	 substitutes correctly 	du
		\bullet $- \int \frac{1}{u^4}$
	 integrates correctly 	• $\left[\frac{1}{3u^3}\right]_{\dots}^{\dots}$

	substitutes correctlycorrect answer	• $\left(\frac{1}{3(-1)^3}\right) - \left(\frac{1}{3\left(\frac{-1}{2}\right)^3}\right)$ • $\frac{7}{3}$	
4(a)	PartMarksLevelCalc.Content(a)4CP2(a)Suppose that $\sqrt{2} = \frac{m}{n}$ where the integers m, n Then $m^2 = 2n^2$.Thus m is even, so $m = 2u$ for some integerThus m is even, so $m = 2u$ for some integerThus $4u^2 = 2n^2$ i.c. $n^2 = 2u^2$, so n is als assumption.	Answer have no common factor. u. so even, contradicting the	U3 OC2 1996 SY2 Q10 1 1 1
4(b)	PartMarksLevelCalc.Content3CCNP6, P1S is true.If p and q are two odd primes then p + Since odd primes are greater than or equal to 3, p T is false.For example $p = 5, q = 3$. (Other examples will do, but they must differ by	Answer q is even. + q cannot be 2. 2.)	U3 OC5 2000 SY2 Q5 1 1 1
5	ans: $-2-5i;-2$ 3 marks• starts correctly• correct root• correct root	• $-2+5i/1$ 6 37 58 • $-2-5i$ • -2	

	Give one mark for each •		Illustrations for awarding each mark
6	 ans: 300π cm³/s starts correctly continues correctly continues correctly correct answer 	4 marks	• $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$ • $4\pi r^{2} \times$ • $12\pi r^{2}$ • 300π
7(a)	ans: $R = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	1 mark	
	 correct answer 		• $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
7(b)	ans: $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	1 mark	
	correct answer		$\bullet \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

	Give one mark for each •	Illustrations for awarding each mark
8	ans: $(-24,104) \rightarrow MaximumT.P.\&$ $(24,-4) \rightarrow MinimumT.P.$ 7 marks	
	find correct first derivative	• $\frac{dy}{dx} = \frac{3t^2 - 27}{8}$
	• solves for <i>t</i> correctly	• $\frac{dy}{dt} = 0 \Rightarrow t = \pm 3$
	 correct coordinates 	dx
	 correct coordinates 	• $(-24,104)$
	 finds second derivative correctly 	• $(24,-4)$ • $\frac{d^2 y}{dx^2} = \frac{3t}{22}$ (or equivalent)
	correct nature	dx 52
		• $(-24,104) \rightarrow \frac{d^2 y}{dx^2} < 0$ MaximumT.P.
	• correct nature	• $(24,-4) \rightarrow \frac{d^2 y}{dx^2} > 0$ MinimumT.P.

	Give o	one mar	k for e	ach •		III	ustrations for awarding ea	ach mark
9	Part	Marks	Level	Calc.	Content		Answer	U3 OC2
		4	С	CN	A25		$k = 2, A^{-1} = \frac{1}{2}B, A^2B = 2A$	2001 B3
	[No ma	nrking ins	tructions	availabi	le]			
10	ans: $\frac{a}{a}$	$\frac{ly}{lx} = \frac{2x}{3a}$	$\frac{1}{x} - 2e^{2x}$	$\frac{2x+3y}{\frac{3}{y}}$	4 marks			
	• start	s correc	tly			•	$e^{2x+3y}\left(\frac{d}{dx}(2x+3y)\right) = \dots$	
	• cont	inues co	orrectly			•	$\dots = 2x - \frac{1}{xy^3} \left(\frac{d}{dx} \left(xy^3 \right) \right)$	
	• diffe	erentiate	es corre	ectly		•	$2e^{2x+3y} + 3e^{2x+3y}\frac{dy}{dx} = 2x - \frac{y^3}{-1}$	$\frac{+3xy^2}{xy^3}\frac{dy}{dx}$
	• corre	ect ansv	ver			•	$\frac{dy}{dx} = \frac{2x - \frac{1}{x} - 2e^{2x + 3y}}{3e^{2x + 3y} + \frac{3}{y}} \text{ (or equivalence)}$	uivalent)

	Give	one mai	rk for e	each •		Illustrations for	awarding each mark
11	Part	Marks	Level	Calc.	Content	Answer	U3 OC4
		10	C	CN	DE7, DE3	$(1-2x)e^{2x}+e^x$	2003 B6
	•1 •2 •3 •4 •5 •6 •7 •8 •9 •10	form aux solve aux state con interpret state firs solve for state gen different interpret solve for	ciliary ec xiliary e plemer form of t and se coeffici eral solu iate gen i initial c coeffici	quation quation tary fun particu cond de ents ution eral solu conditio ents	nction lar integral rivatives Ition n	• $\lambda^{2} - 4\lambda + 4 = 0$ • $\lambda = 2$ • $y_{c} = (A + Bx)e^{2x}$ • $y_{p} = ae^{x}$ • $y'_{p} = y''_{p} = ae^{x}$ • $a = 1$ • $y = (A + Bx)e^{2x}$ • $a = 1$ • $y = (A + Bx)e^{2x}$ • $a = 1e^{x}$ • $a = 1e^{x}$	$+ e^{x}$ + Bx)e ^{2x} + e ^x + 2A + 1
12(a)	ans: F	Proof			4 mark	s	
	 obt diff ob ob 	ains firs erentia tains se tains th	t equa tes cor cond e ird equ	tion rectly quatio Jation	n	• $a + b + c = 1$ • $f'(x) = 3ax^2 + c$ • $3a - 2b + c = 0$ • $a - b + c = -1$	$\frac{1}{2bx+c}$
12(b)	ans: a • cor	a = 1,b = rect aug	1, <i>c</i> = –	1 ed mati	5 marks rix	$\bullet \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & -2 & 1 & 0 \\ 1 & -1 & 1 & -1 \end{pmatrix}$	
	• cor	rect firs	it modi	fied sy	stem	$\bullet \begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & -5 & -2 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -3 \\ -1 \end{pmatrix}$
	• cor	rect sec	ond m	odifiec	system	$\bullet \begin{pmatrix} 1 & 1 & 1 & -1 & -1 \\ 0 & -5 & -2 & -1 \\ 0 & -2 & 0 & -1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix}$
	• co • co	rrect th rrect so	ird mo lution	dified	system	• $\begin{pmatrix} 1 & 1 & 1 \\ 0 & -5 & -2 \\ 0 & 0 & 4 \\ \bullet & a = 1, b = 1, c = 1 \end{pmatrix}$	$\begin{pmatrix} -1 \\ -3 \\ -4 \end{pmatrix}$

13(a)	ans: Proof 1 mark	
	proves correctly	• $\frac{1}{\csc x \csc 2x} = \sin x \sin 2x =$ $\sin x (2 \sin x \cos x) = 2 \cos x \sin^2 x.$
13(b)	ans: Proof 2 marks	
13(0)	 starts correctly 	$\int \cos x \sin^2 x dx =$ $\sin x \cdot \sin^2 x - \int \sin x (2 \sin x \cos x) dx$ $\dots = \sin^3 x - \int 2 \sin^2 x \cos x dx \Rightarrow$
	completes proof	• $3\int \cos x \sin^2 x dx = \sin^3 x \Rightarrow$ $\int \cos x \sin^3 x dx = \frac{1}{3} \sin^3 x + c$
13(c)	ans: $y = \sin^{-1} \left(\sqrt[3]{\frac{3}{2}} e^x - \frac{11}{8} \right)$ 4 marks	
	• rearranges & starts to integrate	• $\int \frac{dy}{\cos ec^2 y \cos ecy} = \int e^x dx$
	• substitutes & integrates correctly	$2\int \cos y \sin^2 y dy =$ • $\int e^x dx \Longrightarrow 2\left(\frac{1}{3}\sin^3 y\right) = e^x + c$
	 substitutes to find correct constant 	• $\left(0,\frac{\pi}{6}\right):\left(\sin\frac{\pi}{6}\right)^3 = \frac{3}{2}e^0 + c \Rightarrow c = -\frac{11}{8}$
	 correct particular solution 	• $y = \sin^{-1} \left(\sqrt[3]{\frac{3}{2}} e^x - \frac{11}{8} \right)$
14	ans: $-2 + \ln 5$ 8 marks	
	 starts correctly continues correctly 	• $\frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1}$ $2x^3 - 3x^2 - 3 \equiv$
		$Ax(x^{2}+1)+B(x^{2}+1)+(Cx+D)x^{2}$
	a correct constant	• $A = 0, B = -3, C = 2orD = 0$
	all constants correct	• $A = 0, B = -3, C = 2 \& D = 0$
	• substitutes correctly	• $\int_{1}^{3} \left(\frac{-3}{x^2} + \frac{2x}{x^2 + 1} \right) dx$
	integrates correctly	• $\left\lfloor \frac{3}{x} + \ln \left x^2 + 1 \right \right\rfloor$
	substitutes correctly	• $(1 + \ln 10) - (3 + \ln 2)$
	correct answer	• $-2 + \ln 5$

	Give one mark for each •	Illustrations for awarding each mark
15(a)	ans: Proof 4 marks	
	 separate the variables & know to integrate 	• $\int \frac{dt}{130-t} = \int kdt$ • $-\ln 130-T = kt + c$
	 integrate correctly 	$T = 130 - \frac{1}{Ae^{kt}} \Longrightarrow 25 = 130 - \frac{1}{Ae^0}$
	 substitute correctly to find correct constant 	$\Rightarrow A = \frac{1}{105}$ (or equivalent)
	completes proof	$T = 130 - \frac{1}{\frac{1}{105}} \Longrightarrow \dots \Longrightarrow T = -105e^{-kt} + 130$
15(b)	ans: 139 seconds 2 marks	
	substitutes correctlycorrect answer	 100 = -105e^{-0.009t} +130 139 seconds

	Give one mark for each •	Illustrations for awarding each mark
16(a)	ans: $z^5 = \cos 5\theta + i \sin 5\theta$ 1 mark	
	• correct answer	• $\cos 5\theta + i \sin 5\theta$
16(b)	ans: $z^5 = \cos^5 \theta + 5i \cos^4 \theta \sin \theta - 10 \cos^3 \theta \sin^2 \theta$ $-10i \cos^2 \theta \sin^3 \theta + 5 \cos \theta \sin^4 \theta + i \sin^5 \theta$	
	2 marksexpands correctlysimplifies correctly	$(\cos\theta)^{5} + 5(\cos\theta)^{4}(i\sin\theta) +$ $ 10(\cos\theta)^{3}(i\sin\theta)^{2} + 10(\cos\theta)^{2}(i\sin\theta)^{3} +$ $ 5(\cos\theta)(i\sin\theta)^{4} + (i\sin\theta)^{5}$ $ \cos^{5}\theta + 5i\cos^{4}\theta\sin\theta - 10\cos^{3}\theta\sin^{2}\theta$ $ - 10i\cos^{2}\theta\sin^{3}\theta + 5\cos\theta\sin^{4}\theta + i\sin^{5}\theta$
16(c) (i)	ans: Proof2 marks• equates real parts correctly	•
	• correct expression	$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$ • $\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$
16(c) (ii)	ans: Proof2 marks• equates imaginary parts correctly	• $\sin 5\theta = 5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta$
	correct expression	• $\sin 5\theta = 16\sin^5 \theta - 20\sin^3 \theta + 5\sin \theta$
16(d)	ans: Proof4 marks• starts correctly	• $\frac{\cos 5\theta}{\sin 5\theta}$
	 simplifies correctly 	• $\frac{16 - 20 \sec^2 \theta + 5 \sec^2 \theta}{16 \tan^5 \theta - 20 \tan^3 \theta \sec^2 \theta + 5 \tan \theta \sec^4 \theta}$
	 substitutes correctly 	• $\frac{16 - 20(1 + \tan^2 \theta) + 5(1 + \tan^2 \theta)^2}{\left[16 \tan^5 \theta - 20 \tan^3 \theta (1 + \tan^2 \theta) + \right]}$ $5 \tan \theta (1 + \tan^2 \theta)^2$
	completes proof	• = $\frac{1 - 10 \tan^2 \theta + 5 \tan^4 \theta}{\tan^5 \theta - 10 \tan^3 \theta + 5 \tan \theta}$

TOTAL MARKS = 100

Additional Questions Solutions form Quest

Part	Marks	Level	Calc.	Content	Answer	U2 OC3
	4	С	CN	A16, A17		2005 Q9
L	et z = a	+ <i>ib</i> so	$\bar{z} = a$	- <i>ib</i>		1
				$z + 2i\bar{z} =$	8 + 7 <i>i</i>	
			a	i + ib + 2ia + 2b =	8 + 7 <i>i</i>	1
				a + 2b =	8	
				2a + b =	7	M1
				3a =	6	
				<i>a</i> =	2; b = 3	
				z =	2 + 3i.	1

Part	Marks	Level	Calc.	Content	Answer	U3 OC5
	3	C	CN	P6, P1		2000 SY2 Q5
S is	true. If	p + q is even.	1			
Since odd primes are greater than or equal to $3, p + q$ cannot be 2.						1
T is false. For example $p = 5, q = 3$. (Other examples will do, but they <i>must</i> differ by 2.)						

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
(a)	4	С		P2		1996 SY2 Q10
(a)	Suppose Then m Thus m	e that $\sqrt{2}^2 = 2n^2$ is even,	$2 = \frac{m}{n}$	where the integer	rs m, n have no common factor.	1 1 1
	Thus 4, assump	$u^2 = 2i$ tion,	n ² i.c. 1	$u^2 = 2u^2$, so n	is also even, contradicting the	1

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	4	C	CN	A25	$k = 2, A^{-1} = \frac{1}{2}B, A^2B = 2A$	2001 B3

[No marking instructions available]

Part	Marks	Level	Calc.	Content	Answer	U3 OC4
	10	С	CN	DE7, DE3	$(1-2x)e^{2x}+e^x$	2003 B6
 1 fo 2 s: 3 s: 4 iii 5 s: 6 s: 7 s: 8 di 9 iii 10 s: 	form aux solve aux state com state first solve for state gen differenti nterpret solve for	iliary eq iliary eq plemen form of and sec coefficie eral solu ate gene initial co coefficie	uation quation tary fur particu cond de ents ition eral solu ondition ents	nction lar integral rivatives Ition n	• $\lambda^{2} - 4\lambda + 4 = 0$ • $\lambda = 2$ • $y_{c} = (A + Bx)e^{2x}$ • $y_{p} = ae^{x}$ • $y'_{p} = y''_{p} = ae^{x}$ • $a = 1$ • $y = (A + Bx)e^{2x} + e^{x}$ • $a = 1$ • $y = (A + Bx)e^{2x} + e^{x}$ • $\frac{dy}{dx} = Be^{2x} + 2(A + Bx)e^{2x} + e^{x}$ • $\frac{dy}{dx} = Be^{2x} + 2(A + Bx)e^{2x} + e^{x}$ • $A = 1, B = -2$	a^{x} $Bx)e^{2x} + e^{x}$ $2A + 1$