Factorials and the Binomial Theorem

Skill	Achieved?
Know that the factorial of $n(n \in \mathbb{N})$ (aka n factorial or factorial n) is: $n!\stackrel{\operatorname{def}}{=} n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1$	
Know that 1! = 1 and, by convention: $0!\stackrel{\operatorname{def}}{=} 1$	
Calculate factorials such as 4! and 11!	
Know that the number of ways of choosing r objects from n without taking into account the order (aka n choose r or the number of combinations of r objects from n) is given by the binomial coefficient ${ }^{n} C_{r}$ defined by: ${ }^{n} C_{r} \equiv\binom{n}{r} \stackrel{\text { def }}{=} \frac{n!}{r!(n-r)!}$	
Evaluate binomial coefficients such as ${ }^{7} C_{4}$ and ${ }^{14} C_{9}$ by first cancelling factorials from the numerator and denominator	
Know the results: $\begin{gathered} \binom{n}{r}=\binom{n}{n-r} \\ \binom{n}{r-1}+\binom{n}{r}=\binom{n+1}{r} \text { (Khayyam-Pascal Identity) } \end{gathered}$	
Solve equations involving binomial coefficients such as, $\begin{gathered} \binom{n}{n-2}=55 \\ \binom{n}{1}+\binom{n}{2}=10 \\ \binom{7}{n-1}+\binom{7}{n}=8 \end{gathered}$	
Prove identities involving binomial coefficients such as,	

$\begin{aligned} \binom{n}{r}+2\binom{n}{r+1} & +\binom{n}{r+2}=\binom{n+2}{r+2} \\ \binom{n+1}{3} & -\binom{n}{3}=\binom{n}{2} \\ \binom{n}{r}\binom{r}{s} & =\binom{n}{s}\binom{n-s}{r-s} \end{aligned}$	
Know Pascal's Triangle up to $n=5$ and interpret the above 2 binomial coefficient results using Pascal's Triangle	
Know the Binomial Theorem : $(x+y)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{n-r} y^{r} \quad(r, n \in \mathbb{W})$	
Know that the binomial theorem may also be written as: $(x+y)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r} y^{n-r}$	
Know that the binomial expansion of $(x+y)^{n}$ is the RHS of the above equation written out fully and has $n+1$ terms	
Expand $(x+y)^{n}$ for $n \leq 5$	
Expand and simplify binomial expressions such as: $\begin{gathered} (a+b)^{5} \\ (x+3)^{4} \\ (2 u-3 v)^{5} \\ \left(x^{2}-\frac{2}{x}\right)^{4} \\ \left(\frac{1}{2} x-3\right)^{4} \end{gathered}$	
Know that the general term in the expansion of $(x+y)^{n}$ is: ${ }^{n} C_{r} x^{r} y^{n-r}$	
Simplify the general term in expressions such as:	

$\left(x^{2}+\frac{1}{x}\right)^{10}$	
Use the general term to find the coefficient of a specific term in a binomial expansion, for example: $\left(x^{2}+\frac{1}{x}\right)^{10} \quad \text { (coefficient of } x^{14} \text {) }$	
Use the general term to find a specific term in a binomial expansion, for example: $\begin{array}{ll} \left(x+\frac{2}{x}\right)^{9} & \left(\operatorname{term} \operatorname{in} x^{7}\right) \\ \left(x-\frac{1}{x}\right)^{8} & \text { (term independent of } x) \end{array}$	
Use the general term to find the specific term in a binomial expansion when told the coefficient of that term, such as: $(2+x)^{6} \quad$ (term with coefficient 64)	
Use the Binomial Theorem to calculate exactly powers such as $0 \cdot 9^{4}$ and $1 \cdot 02^{3}$	
Use the Binomial Theorem to estimate powers such as e^{5} and π^{3}	
Know that, given events A and B with probabilities p and q satisfying $p+q=1$ respectively, the probability of event A occurring r times and event B occurring $n-r$ times is given by, $\binom{n}{r} p^{r} q^{n-r}$	
Use the Binomial Theorem to solve problems involving probability such as (i) if a fair coin is flipped 7 times, calculate the probability of obtaining exactly 5 heads (ii) if the probability of rain on a given day is 0.29 calculate the probability that it will not rain in a week	

Partial Fractions

Skill	Achieved?
Know that a rational function is of the form: $\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials	
Know that a proper rational function is one with $\operatorname{deg} p<\operatorname{deg} q$	
Know that an improper rational function is one with $\operatorname{deg} p \geq \operatorname{deg} q$	
Know that any improper rational function $\frac{p}{q}$ can be written using long division as a polynomial f plus a proper rational function $\frac{g}{q}$: $\frac{p(x)}{q(x)}=f(x)+\frac{g(x)}{q(x)}$	
Write an improper rational function as a polynomial plus a proper rational function by long division	
Know that an irreducible polynomial is one that cannot be factorised	
Know the Partial Fraction Decomposition Theorem, namely that any rational function $\frac{p}{q}$ can be written as a polynomial plus a sum of proper rational functions each of which is of the form: $\frac{g(x)}{r(x)^{n}} \quad(n \in \mathbb{N})$ where r is an irreducible factor of q and $\operatorname{deg} g<\operatorname{deg} r$; such proper rational functions are called partial fractions of $\frac{p}{q}$	
Know that if q has a non-repeated linear factor $r(x)=a x+b$, then the resulting partial fraction is of the form: $\frac{S}{a x+b} \quad(a \neq 0 \neq a x+b ; S \in \mathbb{R})$	
Know that if q has a repeated linear factor $r(x)=(a x+b)^{2}$, then the resulting partial fraction is of the form:	

$$
\frac{S}{a x+b}+\frac{T}{(a x+b)^{2}} \quad(a \neq 0 \neq a x+b ; S, T \in \mathbb{R})
$$

Know that if q has an irreducible quadratic factor

$$
r(x)=a x^{2}+b x+c\left(b^{2}-4 a c<0\right)
$$

then the resulting partial fraction is of the form:

$$
\frac{S x+T}{a x^{2}+b x+c} \quad\left(a \neq 0 \neq a x^{2}+b x+c ; S, T \in \mathbb{R}\right)
$$

Use the Partial Fraction Decomposition Theorem to find partial fractions for rational functions where the denominator is a polynomial of degree at most 3 , for example:

$$
\begin{gathered}
\frac{x^{3}}{x^{2}-1} \\
\frac{x^{2}}{(x+1)^{2}} \\
\frac{1}{x^{2}-x-6} \\
\frac{1}{x^{3}+x} \\
\frac{2 x^{2}-9 x-6}{x\left(x^{2}-x-6\right)} \\
\frac{12 x^{2}+20}{x\left(x^{2}+5\right)} \\
\frac{x^{2}+6 x-4}{(x+2)^{2}(x-4)} \\
\frac{3 x+5}{(x+1)(x+2)(x+3)} \\
\frac{13-x}{x^{2}+4 x-5} \\
\hline
\end{gathered}
$$

Differential Calculus

Skill	Achieved?
Know the meaning of limit	
Know that the derivative of a function f is defined by: $f^{\prime}(x) \stackrel{\operatorname{def}}{=} \lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)$	
Know that differentiating a function from first principles means using the above definition explicitly	
Know the meaning of higher derivative	
Know that if the first derivative of a function f is differentiable, then the second derivative of f is defined as: $\frac{d^{2} f}{d x^{2}} \stackrel{\operatorname{def}}{=} \frac{d}{d x}\left(\frac{d f}{d x}\right)$	
Know that if f is sufficiently differentiable, then the $n^{\text {th }}$ derivative of $f(n \geq 2)$ is defined as: $\frac{d^{n} f}{d x^{n}} \stackrel{\text { def }}{=} \underbrace{\frac{d}{d x}\left(\frac{d}{d x}\left(\frac{d}{d x} \cdots\left(\frac{d}{d x}\left(\frac{d}{d x} f\right)\right) \cdots\right)\right)}_{n \text { times }}$	
Know the Product Rule (in Euler and Lagrange notation, respectively): $\begin{gathered} \Delta(f g)=(D f) g+f(\Delta g) \\ (f g)^{\prime}=f^{\prime} g+f g^{\prime} \end{gathered}$	
Use the product rule to differentiate functions such as: $\begin{gathered} p(x)=x(1+x)^{10} \\ y=(x+1)(x-2)^{3} \end{gathered}$	
Know the Quotient Rule : $\begin{aligned} & \Delta\left(\frac{f}{g}\right)=\frac{(\Delta f) g-f(\Delta g)}{g^{2}} \\ & (f / g)^{\prime}=\frac{1}{g^{2}}\left(f^{\prime} g-f g^{\prime}\right) \end{aligned}$	
Use the quotient rule to differentiate functions such as:	

$$
\begin{aligned}
y & =\frac{x}{1+x^{2}} \\
f(x) & =\frac{x-3}{x+2} \\
y & =\frac{1+x^{2}}{1+x} \\
r(x) & =\frac{x^{2}+2 x}{x^{2}-1}
\end{aligned}
$$

Know the definitions of the reciprocal trigonometric functions (secant x, cosecant x and cotangent x):

$$
\begin{aligned}
\sec x & \stackrel{\operatorname{def}}{=} \frac{1}{\cos x} \\
\operatorname{cosec} x & \stackrel{\text { def }}{=} \frac{1}{\sin x} \\
\cot x & \stackrel{\text { def }}{=} \frac{\cos x}{\sin x}
\end{aligned}
$$

Prove the following identities:

$$
1+\tan ^{2} x=\sec ^{2} x
$$

$1+\cot ^{2} x=\operatorname{cosec}^{2} x$ Know that:
$\operatorname{dom}(\sec x)=\mathbb{R} \backslash\left\{x \in \mathbb{R}: x=\frac{\pi}{2}+\pi n, n \in \mathbb{Z}\right\}$
$\operatorname{ran}(\sec x)=\mathbb{R} \backslash(-1,1)$
Know that:
$\operatorname{dom}(\operatorname{cosec} x)=\mathbb{R} \backslash\{x \in \mathbb{R}: x=\pi n, n \in \mathbb{Z}\}$
$\operatorname{ran}(\operatorname{cosec} x)=\mathbb{R} \backslash(-1,1)$
Know that:
$\operatorname{dom}(\cot x)=\mathbb{R} \backslash\{x \in \mathbb{R}: x=\pi n, n \in \mathbb{Z}\}$

$\operatorname{ran}(\cot x)=\mathbb{R}$	
Sketch the graphs of $y=\sec x, y=\operatorname{cosec} x$ and $y=\cot x$	
Know the following derivatives: $\begin{aligned} D(\sec x) & =\sec x \tan x \\ D(\operatorname{cosec} x) & =-\operatorname{cosec} x \cot x \\ D(\cot x) & =-\operatorname{cosec}^{2} x \\ D(\tan x) & =\sec ^{2} x \end{aligned}$	
Use the chain rule to differentiate functions such as: $\begin{aligned} f(x) & =\left(3 x^{2}-5\right)^{2} \\ g(x) & =\sqrt{\cos x} \\ d(x) & \left.=\sin x^{\circ} \quad \text { (answer is not } \cos x^{\circ}\right) \\ f(x) & =\cos (\cos x) \\ k(x) & =\tan 5 x \\ m(x) & =\operatorname{cosec}(\sin x) \\ w(x) & =\sec \left(6-9 x^{2}\right) \\ p(x) & =\sqrt{\cot x} \end{aligned}$	
Use at least a double application of the chain rule to differentiate functions such as: $\begin{gathered} r(x)=\frac{1}{\sin ^{2}(4 x+2)} \\ n(x)=\cos \left(\frac{1}{x^{2}+6 x+9}\right) \end{gathered}$	
Know the definition of the natural logarithm function as: $\ln x \stackrel{d e f}{=} \int_{1}^{x} \frac{1}{t} d t$	

Know that the derivative of the natural logarithm function is:

$$
D(\ln x)=\frac{1}{x}
$$

Know the definition of the exponential function to base e as the inverse of the natural logarithm function:

$$
\exp \stackrel{\operatorname{def}}{=} \ln ^{-1}
$$

or, in terms of composition:

$$
e^{\ln x}=\ln e^{x}=x
$$

Know that the derivative of the exponential function to base e is:

$$
\begin{gathered}
D\left(e^{x}\right)=e^{x} \\
\text { sometimes written as: }
\end{gathered}
$$

$$
D(\exp x)=\exp x
$$

Use the chain rule to differentiate functions such as:

$$
\begin{gathered}
k(x)=\exp (7 x) \\
g(x)=\ln (8 x) \\
f(x)=e^{5 x^{3}+4} \\
j(x)=\ln \left(3 x^{2}-4\right) \\
v(x)=e^{e^{x}} \\
b(x)=\ln (\sec x) \\
d(x)=\exp (\sin 2 x) \\
p(x)=e^{\cot 2 x} \\
f(x)=\ln (\ln x) \\
r(x)=e^{\ln 6 x} \\
s(x)=\ln (\cos 2 x)
\end{gathered}
$$

$f(x)=\sqrt{\sin x}$	
Use a combination of the product, quotient and chain rules to differentiate functions such as: $\begin{gathered} f(x)=\sqrt{x} e^{-x} \\ v(x)=\cos ^{2} x e^{\tan x} \\ e(x)=x^{3} \tan 2 x \\ y=\frac{1+\ln x}{3 x} \\ s(x)=\frac{x}{\ln 7 x} \\ t(x)=e^{x} \sin x^{2} \\ a(x)=\frac{x^{3}}{(1+\tan x)} \\ b(x)=\frac{\cot x+\sec x}{\cot x-\sec x} \end{gathered}$	
Find the second derivative of a function, for example: $f(x)=\frac{x}{\ln x}$	

Applications of Differentiation

Skill	Achieved?
Know that rectilinear motion means motion in a straight line (or along an axis, usually the x-axis)	
Know that displacement (from the origin) is a function of time s (t)	
Know that velocity is the first derivative of displacement: $v(t) \stackrel{d e f}{=} \frac{d s}{d t}$	
Know that acceleration is the first derivative of velocity (equivalently, the second derivative of displacement): $a(t) \stackrel{d e f}{=} \frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}$	
Know the Newton notation (aka dot notation) for derivatives (especially derivatives with respect to time): $\dot{s}(t) \stackrel{d e f}{=} \frac{d s}{d t}$	
Know that velocity and acceleration can be written in Newton notation as, respectively: $v(t)=\dot{s}(t)$ and $a(t)=\ddot{s}(t)$	
Given displacement, calculate velocity	
Given displacement or velocity, calculate acceleration	
Know that the right-hand derivative of f at $x=a$ is: $f_{+}^{\prime}(a) \stackrel{\operatorname{def}}{=} \lim _{h \rightarrow 0^{+}}\left(\frac{f(a+h)-f(a)}{h}\right)$	
Know that the left-hand derivative of f at $x=a$ is: $f_{-}^{\prime}(a) \stackrel{\operatorname{def}}{=} \lim _{h \rightarrow 0^{-}}\left(\frac{f(a+h)-f(a)}{h}\right)$	
Know that a function is differentiable at $x=a$ if the left-hand derivative at $x=a$ exists, the right-hand derivative at $x=a$ exists and these 2 derivatives have the same value at a	
Know that a function is not differentiable at $x=a$ if either	
M Patel (August 2011) 11 St. Mac	ar Academy

$\nexists f_{+}^{\prime}(a)$ or $\nexists f_{-}^{\prime}(a)$ or $f_{+}^{\prime}(a) \neq f_{-}^{\prime}(a)$	
Know that the non-differentiability of a function can be discerned from its graph by identifying 'sharp corners'	
Know that a function f has a critical point at $x=a$ if either (i) $f^{\prime}(a)=0$ or (ii) $\nexists f^{\prime}(a)$	
Know that if $(a, f(a))$ is a critical point, then a is called a critical number and $f(a)$ a critical value	
Find critical points of functions	
Know that a function can have 3 types of extrema: Local extrema Endpoint extrema Global extrema	
Know that a function f has a local (relative) maximum at $x=a$ if \exists an open interval I about a for which $f(a) \geq f(x) \forall x \in I$	
Know that a function has a local (relative) minimum at $x=a$ if \exists an open interval I about a for which $f(a) \leq f(x) \forall x \in I$	
Know that all local extrema occur at critical points	
Find local extrema of functions	
Know that not all critical points are local extrema	
Know that, if a is an endpoint in $\operatorname{dom} f, f$ has an endpoint maximum $\begin{gathered} \text { at } x=a \text { if } \exists p \in \operatorname{dom} f \text { for which } f(a) \geq f(x) \\ (\forall x \in[a, p) \text { or }(p, a]) \end{gathered}$	
Know that, if a is an endpoint in dom f, f has an endpoint minimum at $x=a$ if $\exists p \in \operatorname{dom} f$ for which $f(a) \leq f(x)$ ($\forall x \in[a, p)$ or $(p, a])$	
Know that a function has a global (absolute) maximum at $x=a$ if $f(a) \geq f(x)(\forall x \in \operatorname{dom} f)$	
Know that a function has a global (absolute) minimum at $x=a$ if $f(a) \leq f(x)(\forall x \in \operatorname{dom} f)$	
Know that every global extremum is either a local extremum or an endpoint extremum	
Find global extrema of functions	
Know the second derivative test for local maxima and local minima: If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$, then f has a local minimum at a If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$, then f has a local maximum at a	
Use the second derivative test to find local extrema	
Know that function is concave up on an interval if $f^{\prime \prime}(x)>0$	

Know that function is concave down on an interval if $f^{\prime \prime}(x)<0$	
Know that a P of I occurs at a point when there is a change of concavity as the graph passes through that point	
Know that if f has a point of inflexion at $x=a$, then either $f^{\prime \prime}(a)=0$ or $\nexists f^{\prime \prime}$ (a)	
Know that a function may have a non-horizontal point of inflexion, for example: $f(x)=\frac{x}{\ln x}$	
Find the coordinates and nature of stationary points of functions such as: $\begin{aligned} f(x) & =\frac{x^{2}+6 x+12}{x+2} \\ y & =\frac{x^{2}}{(x+1)^{2}} \\ y & =\frac{x}{1+x^{2}} \\ y & =\frac{x^{3}}{x-2} \end{aligned}$	
Prove that a function has no stationary points, for example: $f(x)=\frac{x-3}{x+2}$	
Prove that a function has no points of inflexion, for example: $f(x)=\frac{x-3}{x+2}$	
Solve optimisation problems (which may involve critical points)	

Integral Calculus

Skill	Achieved?
Know the standard integrals: $\begin{gathered} \int e^{x} d x=e^{x}+C \\ \int \frac{1}{x} d x=\ln \|x\|+C \\ \int \sec ^{2} x d x=\tan x+C \end{gathered}$	
Know the technique of integration by substitution	
Know certain general forms of substitution (in both cases, letting $u=f(x)$): $\begin{aligned} & \int(D f) f d x=\frac{1}{2} f^{2}+C \\ & \int \frac{\Delta f}{f} d x=\ln \|f\|+C \end{aligned}$	
Use integration by substitution to find indefinite integrals such as: $\begin{gathered} \int \frac{1}{x^{2}+4 x+8} d x \quad(x+2=2 \tan \theta) \\ \int \frac{1}{(1+\sqrt{x})^{3}} d x \quad\left(x=(u-1)^{2}\right) \\ \int \frac{x^{3}}{1+x^{8}} d x \quad\left(t=x^{4}\right) \\ \int \frac{x}{\sqrt{1-x^{2}}} d x \quad\left(u=1-x^{2}\right) \\ \int \frac{12 x^{3}-6 x}{x^{4}-x^{2}+1} d x \end{gathered}$	

$\int \frac{x}{\sqrt{1-49 x^{4}}} d x$	
Use integration by substitution to find definite integrals such as: $\begin{gathered} \int_{0}^{\pi / 2} \frac{\cos \theta}{(1+\sin \theta)^{3}} d \theta \quad(x=1+\sin \theta) \\ \int_{0}^{3} \frac{x}{\sqrt{1+x}} d x \quad(u=1+x) \\ \int_{0}^{1} \frac{x^{3}}{\left(1+x^{2}\right)^{4}} d x \quad\left(u=1+x^{2}\right) \\ \int_{0}^{\ln 2} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} d x \\ \int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x \end{gathered}(x=2 \sin \theta)$	
c and d on the y-axis using the formula: $A=\int_{c}^{d} f^{-1}(y) d y$	
Calculate the area between 2 curves $x=f^{-1}(y)$ and $x=g^{-1}(y)$ (assuming $y=f(x)$ and $y=g(x)$ are invertible) by integrating 'right-hand function - left-hand function' between two limits c and d, $A=\int_{c}^{d}\left(f^{-1}(y)-g^{-1}(y)\right) d y=\int_{c}^{d} f^{-1}(y) d y-\int_{c}^{d} g^{-1}(y) d y$ where $f^{-1}(y) \geq g^{-1}(y)$ and $c \leq y \leq d$	
Know the meaning of solid of revolution	
Know the meaning of volume of solid of revolution	

Know that the volume of solid of revolution formed by rotating the graph of the function $y=f(x) 360^{\circ}$ about the x-axis between $x=a$ and $x=b$ is given by:

$$
V=\pi \int_{a}^{b} y^{2} d x
$$

Know that the volume of solid of revolution formed by rotating the graph of the function $x=g(y) 360^{\circ}$ about the y-axis between $y=c$ and $y=d$ is given by:

$$
V=\pi \int_{c}^{d} x^{2} d y
$$

Calculate volumes of solids of revolution, such as:
$y=e^{-2 x}$ between $x=0$ and $x=1,360^{\circ}$ about the x-axis $y=\frac{x^{3 / 2}}{\left(1+x^{2}\right)^{2}}$ between $x=0$ and $x=1,360^{\circ}$ about the x-axis

Region between $y=x^{2}$ and $y^{2}=8 x, 360^{\circ}$ about the y-axis
Know that velocity is the integral of acceleration and that displacement is the integral of velocity:

$$
\begin{aligned}
& v(t)=\int a(t) d t \\
& s(t)=\int v(t) d t
\end{aligned}
$$

Know that a useful visualisation (and calculation) aid in linking displacement, velocity and acceleration is:

Know that at rest (when $t=a$) means $v(a)=0$; usually $a=0$

Properties of Functions

Skill	Achieved?
Know the definition of the modulus function: $\|x\|=\left\{\begin{array}{cc} x & (x \geq 0) \\ -x & (x<0) \end{array}\right.$	
Know that, for example, $\|7\|=7,\|0\|=0$ and $\|-3\|=3$	
Know that the modulus of a function f is given by: $\|f\|= \begin{cases}f & (f \geq 0) \\ -f & (f<0)\end{cases}$	
Given the graph of a function, sketch the graph of the modulus of that function, for example: $\begin{gathered} \left\|x^{2}-3\right\| \\ \|\sin x\| \\ \|\cos 2 x\| \\ \|\ln x\| \\ \left\|x^{3}+2\right\| \\ \|\sec x\| \end{gathered}$	
Know the definitions of the inverse trigonometric functions inverse sine (aka arcsine, written $\sin ^{-1}$), inverse cosine (aka arccosine, written $\cos ^{-1}$) and inverse tangent (aka arctangent, written $\tan ^{-1}$) as the inverse of the sine, cosine and tangent functions	
Know that: $\begin{aligned} & \operatorname{dom}\left(\sin ^{-1} x\right)=[-1,1] \\ & \operatorname{ran}\left(\sin ^{-1} x\right)=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \end{aligned}$	
Know that:	

$\begin{aligned} \operatorname{dom}\left(\cos ^{-1} x\right) & =[-1,1] \\ \operatorname{ran}\left(\cos ^{-1} x\right) & =[0, \pi] \end{aligned}$	
Know that: $\operatorname{dom}\left(\tan ^{-1} x\right)=\mathbb{R}$ $\operatorname{ran}\left(\tan ^{-1} x\right)=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	
Sketch the graphs of $y=\sin ^{-1} x, y=\cos ^{-1} x$ and $y=\tan ^{-1} x$	
Know that f is an even function if: $f(x)=f(-x) \quad(\forall x \in \operatorname{dom} f)$	
Know that f is an odd function if: $f(x)=-f(x) \quad(\forall x \in \operatorname{dom} f)$	
Sketch the graph of an even or odd function	
Know that a function is neither even nor odd if it is not even and if it is not odd	
Determine whether a given function is even, odd or neither, such as: $\begin{gathered} w(x)=x^{4}-8 x^{2}+7 \\ p(x)=x^{3}-4 x \\ m(x)=x^{2}+x \\ f(x)=x^{4} \sin 2 x \\ g(x)=x^{2} \cos 3 x \\ h(x)=x^{3} \tan 4 x \\ n(x)=e^{x}-e^{-x} \\ a(x)=e^{x}+e^{-x} \\ d(x)=x+\frac{1}{x} \end{gathered}$	
Given the graph of a function, determine whether the function is even, odd or neither	
Know that asymptotes can be of 3 types:	

Vertical Asymptotes (Equation: $x=$ constant)
Horizontal Asymptotes (Equation: $y=$ constant)
Oblique Asymptotes (Equation: $y=m x+c$)
Recall that any improper rational function $\frac{p}{q}$ can be written by long division as a polynomial f plus a proper rational function $\frac{g}{q}$:

$$
\frac{p(x)}{q(x)}=f(x)+\frac{g(x)}{q(x)}
$$

Know that the solutions of $q(x)=0$ give vertical asymptotes and that either: (i) $y=f(x)$ is a horizontal asymptote if f is a constant function or (ii) $y=f(x)$ is an oblique asymptote if f is a linear function
Find or state asymptotes for rational functions
Sketch the graph of a rational function, indicating stationary points, asymptotes and intersections with axes, for example:

$$
\begin{gathered}
f(x)=\frac{x^{2}+6 x+12}{x+2} \\
g(x)=\frac{x^{2}+2 x}{x^{2}-1} \\
r(x)=\frac{x^{2}}{(x+1)^{2}}
\end{gathered}
$$

Given the graph of a function, sketch the graph of a closely related modulus function, indicating the new critical points, such as:

Given $y=\frac{x}{1+x^{2}}$, sketch $y=\left|\frac{x}{1+x^{2}}\right|$

Given $y=\frac{x^{3}}{x-2}$, sketch $y=\left|\frac{x^{3}}{x-2}\right|+1$
Given the graph of a function with asymptotes, sketch the graph of a related function indicating the new asymptotes

Systems of Equations and Gaussian Elimination

Skill	Achieved?
Know that a 3×3 system of (linear) equations is of the form: $\begin{aligned} & a x+b y+c z=j \\ & d x+e y+f z=k \\ & g x+h y+i z=1 \end{aligned}$	
Know that the coefficient matrix for the above system is: $\left(\begin{array}{lll} a & b & c \\ d & e & f \\ g & h & i \end{array}\right)$	
Know that the Augmented Matrix for the above system is: $\left(\begin{array}{lll\|l} a & b & c & j \\ d & e & f & k \\ g & h & i & / \end{array}\right)$	
Know that a system of equations can be solved by applying to the Augmented Matrix elementary row operations (EROs), which are of are of 3 types: Interchanging 2 or more rows Multiplying a row by a non-zero real number Replacing a row by adding it to a multiple of another row	
Know that EROs do not change the solution of a system of equations	
Know the meaning of row reduction and row reduce	
Know that an augmented matrix (or coefficient matrix) is in row echelon form if each non-zero row has more leading zeros than the previous row: $\left(\begin{array}{lll\|l} a & b & c & j \\ 0 & e & f & k \\ 0 & 0 & i & / \end{array}\right)$	
Use EROs to row reduce a system of equations into row echelon form	
Know that Gaussian Elimination is the technique of row reducing a system of equations to row echelon form	

$\left.\begin{array}{|c|c|}\hline \text { Know that a system of equations has either: } \\ \text { No solution (aka inconsistency) } \\ \text { A unique solution } \\ \text { Infinitely many solutions }\end{array}\right]$

$$
\begin{aligned}
x+y+3 z & =1 \\
3 x+a y+z & =1 \\
x+y+z & =-1 \\
x+y+2 z & =1 \\
2 x+b y+z & =0 \\
3 x+3 y+9 z & =5 \\
2 x-y+2 z & =1 \\
x+y-2 z & =2 \\
x-2 y+4 z & =-1 \\
x-y-z & =6 \\
x+2 z & =2 \\
2 x-3 y+2 z-4 z & =1 \\
-5 x+2 y+z & =1 \\
x-y+2 z & =0 \\
x+y+2 & =2
\end{aligned}
$$

Know that a system of equations is ill-conditioned when changing the entries of the Augmented Matrix induce a large change in the solution set of the system of equations
Know the geometric interpretation of a system of 2 equations in 2 variables to be ill-conditioned, namely, that the lines representing each equation are almost parallel
Determine whether or not a system of 2 equations in 2 variables is ill-conditioned

