Matrices

Skill	Achieved?
Know that a matrix is a rectangular array of numbers (aka entries or elements) in parentheses, each entry being in a particular row and column	
Know that the order of a matrix is given as $m \times n$ (read m by n), where m is the number of rows and n the number of columns and is written as: $A \equiv\left(a_{i j}\right)_{m \times n} \stackrel{\text { def }}{=}\left(\begin{array}{ccccc} a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\ a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\ \vdots & \vdots & \vdots & \ddots & \\ a_{m 1} & a_{m 2} & a_{m 3} & & a_{m n} \end{array}\right)$	
Know that the main diagonal (aka leading diagonal) of any matrix is the set of entries $a_{i j}$ where $i=j$	
Know that the element in row i and column j of a matrix is written as $a_{i j}$ and called the $(i, j)^{\text {th }}$ entry of A	
Know that a row matrix is a $1 \times n$ matrix and is written as: $\left(a_{11} a_{12} \ldots a_{1(n-1)} a_{1 n}\right)$	
Know that a column matrix is a $m \times 1$ matrix and is written as: $\left(\begin{array}{c} a_{11} \\ a_{21} \\ \vdots \\ a_{(m-1) 1} \\ a_{m 1} \end{array}\right)$	
Know that a square matrix (of order $m \times m$ or just of order m) is a matrix with the same number of rows as columns (equal to m) and is written as: $\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1 m} \\ a_{21} & a_{22} & \ldots & a_{2 m} \\ \vdots & \vdots & \ddots & \\ a_{m 1} & a_{m 2} & & a_{m m} \end{array}\right)$	
Know that the identity matrix (of order m) is the $m \times m$ matrix all of whose entries are 0 apart from those on the	

main diagonal, where they all equal 1:

$$
I_{m} \stackrel{\operatorname{def}}{=}\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & & 1
\end{array}\right)
$$

Know that the zero matrix (of order $m \times n$) is the $m \times n$ matrix all of whose entries are 0 :

$$
O_{m \times n} \stackrel{\text { def }}{=}\left(\begin{array}{ccccc}
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
0 & 0 & 0 & & 0
\end{array}\right)
$$

Know that the transpose of an $m \times n$ matrix A (denoted A^{\top}) is the $n \times m$ matrix obtained by interchanging the rows and columns of $A\left(\left(a^{\top}\right)_{i j}\right.$ denotes the $(i, j)^{\text {th }}$ entry of $\left.A^{\top}\right)$:

$$
\left(\mathrm{a}^{\top}\right)_{i j} \stackrel{\operatorname{def}}{=} a_{j i}
$$

Obtain the transpose of any matrix
Know that 2 matrices are equal if they both have the same order and all corresponding entries are equal

Know that matrices can be added or subtracted only if they have the same order	
Add or subtract 2 matrices A and B (thus obtaining the matrix sum $A+B$ or matrix difference $A-B)$ by adding or subtracting the corresponding entries of each matrix $\left((a \pm b)_{i j}\right.$ denotes the $(i, j)^{\text {th }}$ entry of the sum or difference): $(a \pm b)_{i j} \stackrel{\operatorname{def}}{=} a_{i j} \pm b_{i j}$	
Add or subtract more than 2 matrices	
Multiply any matrix A by a real scalar k (thus obtaining the scalar multiplication $k A$) by multiplying each entry of A by k $\left((k a)_{i j}\right.$ denotes the $(i, j)^{\text {th }}$ entry of $\left.k A\right)$: $(k a)_{i j} \stackrel{\text { def }}{=} k a_{i j} \quad(k \in \mathbb{R})$	
Scalar multiply a matrix by a real scalar	
Know, use and verify the following matrix properties (for $k \in \mathbb{R}$):	
M Patel (August 2011) 2 St.Mact	achar Academy

$\begin{aligned} A+B & =B+A \\ (A+B)+C & =A+(B+C) \\ k(A+B) & =k A+k B \\ (A+B)^{\top} & =A^{\top}+B^{\top} \\ \left(A^{\top}\right)^{\top} & =A \\ (k A)^{\top} & =k A^{\top} \end{aligned}$	
Know that 2 matrices A and B can only be multiplied in the order A times B (thus obtaining the matrix product $A B$) if the number of columns of A equals the number of rows of B	
Multiply 2 matrices A (of order $m \times n$) and B (of order $n \times p$) according to the rule, where $(a b)_{i j}$ denotes the $(i, j)^{\text {th }}$ entry of $A B$: $\begin{gathered} (a b)_{i j} \stackrel{\text { def }}{=} \sum_{k=1}^{n} a_{i k} b_{k j} \\ (1 \leq i \leq m \text { and } 1 \leq j \leq p) \end{gathered}$	
Know that, in general: $A B \neq B A$	
Know that when forming $A B$, we say that B is pre-multiplied by A, or A is post-multiplied by B	
Multiply 2 or more matrices where m and n are at most equal to 3	
Know that a (square) matrix A can be multiplied by itself any number of times (thus obtaining the $n^{\text {th }}$ power of A): $A^{n} \stackrel{\operatorname{def}}{=} \underbrace{A \times A \times A \times \ldots \times A}_{n \text { times }}$	
Know, use and verify the following matrix properties: $\begin{aligned} A(B C) & =(A B) C \\ A(B+C) & =A B+A C \\ (A B)^{\top} & =B^{\top} A^{\top} \end{aligned}$	
Know that a matrix A is symmetric if $A^{\top}=A$ (thus, A is square)	
Know that a symmetric matrix is symmetrical about the main diagonal	

Know that a matrix A is skew-symmetric (aka anti-symmetric) if $A^{\top}=-A$ (thus, A is square)
Know that a skew-symmetric matrix has all main diagonal entries equal to 0
Know that a square matrix A (of order $n \times n$) is orthogonal if:

$$
A^{\top} A=I_{n}
$$

Know that a system of m equations in n variables may be written in matrix form, where A is the $m \times n$ matrix of coefficients (aka coefficient matrix), x is the $n \times 1$ solution vector and b an $m \times 1$ column vector as:

$$
A x=b
$$

Know that for an $n \times n$ matrix A, the minor of entry $a_{i j}$ is the determinant (denoted $M_{i j}$) of the $(n-1) \times(n-1)$ matrix formed from A by deleting the $i^{\text {th }}$ row and $j^{\text {th }}$ column of A Know that the cofactor of entry $a_{i j}$ is the quantity:

$$
C_{i j} \stackrel{\text { def }}{=}(-1)^{i+j} M_{i j}
$$

Know that for the determinant of a general $n \times n$ matrix is given by the Laplace expansion formula:

$$
\operatorname{det}(A) \equiv|A| \stackrel{\operatorname{def}}{=} \sum_{j=1}^{n} a_{i j} C_{i j} \quad(i=1,2,3, \ldots, n)
$$

Know that a system of n equations in n unknowns has a solution if the determinant of the coefficient matrix is non-zero

Know that the determinant of a 1×1 matrix is:

$$
|A| \equiv|(a)|=a
$$

Know that the determinant of a 2×2 matrix is:

$$
|A| \equiv\left|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right|=a d-b c
$$

Calculate the determinant of any 2×2 matrix
Know that the determinant of a 3×3 matrix is:
$|A| \equiv\left|\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)\right|=a\left|\left(\begin{array}{ll}e & f \\ h & i\end{array}\right)\right|-b\left|\left(\begin{array}{ll}d & f \\ g & i\end{array}\right)\right|+c\left|\left(\begin{array}{ll}d & e \\ g & h\end{array}\right)\right|$

Calculate the determinant of any 3×3 matrix
Know that an $n \times n$ matrix A has an inverse if there is a matrix (denoted A^{-1}) such that:

$$
A A^{-1}=I_{n} \text { or } A^{-1} A=I_{n}
$$

Know that there is only 1 inverse (if it exists) for any given matrix	
Know that a matrix is invertible (aka non-singular) if it has an inverse	
Know that if a matrix does not have an inverse, then it is said to be non-invertible (aka singular)	
Know that a matrix is invertible iff jet $(A) \neq 0$	
Know that a matrix is non-invertible iff jet $(A)=0$	
Given a missing variable in a 2×2 or 3×3 matrix, obtain the value(s) of this variable for which the matrix is singular or non-singular	
Know that the cofactor matrix of square matrix A is	
the matrix C whose $(i, j)^{\text {th }}$ entry is $C_{i j}$	
Know	

Know that the adjugate (aka classical adjoint) of a square matrix A is the transpose of the cofactor matrix C :

$$
\operatorname{adj}(A) \stackrel{\operatorname{def}}{=} C^{\top}
$$

Know that the inverse of a matrix A is given by:

$$
A^{-1}=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)}
$$

Calculate the inverse of a 2×2 matrix using the formula:

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Know, use and verify the following matrix properties:

$$
\begin{aligned}
&|A B|=|A| \times|B| \\
&|k A|=k^{n}|A| \quad(k \in \mathbb{R}, n \in \mathbb{N}, A \text { is } n \times n) \\
&\left|A^{\top}\right|=|A| \\
&\left|A^{-1}\right|=\frac{1}{|A|}
\end{aligned}
$$

$\begin{gathered} \left(A^{-1}\right)^{-1}=A \\ \left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1} \\ \left(k A^{-1}\right)=\frac{1}{k} A^{-1} \\ (A B)^{-1}=B^{-1} A^{-1} \end{gathered}$	
Calculate the inverse of a 3×3 matrix using EROs by forming a big Augmented matrix consisting of A on the LHS and the identity matrix on the right, then row reducing the Augmented Matrix until the identity is reached on the left and whatever remains on the RHS is A^{-1}	
Know that a system of equations $A x=\mathrm{b}$ can be solved by premultiplying each side of this equation by A^{-1}, and so the solution vector is obtained as: $x=A^{-1} b$	
Know that a linear transformation in the plane is a function that sends a point $P(x, y)$ to a point $Q(a x+b y, c x+d y)$ for $a, b, c, d \in \mathbb{R}$	
Know that a linear transformation in the plane can be described as a matrix equation: $\binom{x^{\prime}}{y^{\prime}} \stackrel{\operatorname{def}}{=}\binom{a x+b y}{c x+d y}=\left(\begin{array}{ll} a & b \\ c & d \end{array}\right)\binom{x}{y}$	
Know that in the above equation, the matrix with entries a, b, c and d is called the transformation matrix	
Know that if a transformation is represented by a matrix A, then the reverse of that transformation is represented by A^{-1}	
Know that a transformation matrix can be obtained by considering the effect of a geometrical transformation on the points $(0,1)$ and $(1,0)$	
Know that an invariant point is one that has the same image under a transformation	
Find invariant points of a given transformation by solving the equation: $\left(\begin{array}{ll} a & b \\ c & d \end{array}\right)\binom{x}{y}=\binom{x}{y}$	
Know that a reflection in the line $y=x$	

has transformation matrix: $\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$	
Know that an anticlockwise rotation of angle θ (about the origin) has transformation matrix: $\left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right)$	
Know that a dilatation (aka scaling) has transformation matrix: $\left(\begin{array}{ll} k & 0 \\ 0 & k \end{array}\right) \quad(k \in \mathbb{R})$	
Derive transformation matrices for other geometrical transformations, for example: Reflection in the line $y=-x$ Reflection in the x-axis Reflection in the y-axis Half-turn anticlockwise about the origin Quarter-turn clockwise about the origin	
Know that a combination of transformations is found by matrix multiplication	
Derive the transformation matrix of a combination of transformations, and describe the effect this combination has on a given point, for example: reflection in the x-axis, then anti-clockwise rotation of 30° anti-clockwise rotation of $\frac{\pi}{2}$ radians, then reflection in the x-axis enlargement of scale factor 2 , then a clockwise rotation of 60°	
Find the equation of the image of a given curve (possibly giving the answer in implicit form) under a given transformation	

Vectors, Planes and Lines

Skill	Achieved?
Know that the direction ratio of a vector is the ratio of its components in the order $x: y(: z)$	
Determine the direction ratio of a vector	
Know that 2 vectors with the same direction ratio are parallel	
Know that if α, β and γ are the angles the vector v makes with the x, y and z axes, and u is a unit vector in the direction of v, then $\cos \alpha, \cos \beta$ and $\cos \gamma$ are the direction cosines of v and: $\mathbf{u}=\left(\begin{array}{l} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{array}\right) \Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$	
Determine the direction cosines of a vector	
Know that the vector product (aka cross product) of 2 vectors a and b, where θ is the angle from a to b, and n is a unit vector at right angles to both a and b, is defined as: $\mathbf{a} \times \mathbf{b} \stackrel{\operatorname{def}}{=}\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta \mathbf{n}$	
Know that the vector product is only defined in 3D and $a \times b$ is a vector at right angles to both a and b	
Know that the vector product is a vector, not a scalar	
Know that the 3 unit vectors, \mathbf{i}, \mathbf{j} and \mathbf{k} satisfy: $\begin{aligned} & \mathbf{i} \times \mathbf{j}=\mathbf{k} \\ & \mathbf{j} \times \mathbf{k}=\mathbf{i} \\ & \mathbf{k} \times \mathbf{i}=\mathbf{j} \end{aligned}$ and $i \times i=j \times j=k \times k=0$	
Know the following properties of the vector product: $\begin{gathered} a \times a=0 \\ a \times b=-b \times a \end{gathered}$	

$\begin{aligned} & a \times(b+c)=(a \times b)+(a \times c) \\ & (a+b) \times c=(a \times c)+(b \times c) \end{aligned}$	
Know that if the vector product of 2 vectors is 0 , then they are parallel	
Know that if 2 non-zero vectors are parallel, then their vector product is $\mathbf{0}$	
Given the components of 2 vectors, calculate their vector product using the component form of the vector product: $\mathbf{a} \times \mathbf{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}$	
Given the magnitude of 2 vectors and the angle between them, calculate their vector product	
Given 2 vectors in component form and the angle between them, calculate their vector product	
Given 2 vectors in component form, calculate their vector product	
Calculate the scalar triple product of 3 vectors using: $[\mathbf{a}, \mathbf{b}, \mathbf{c}] \equiv \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) \stackrel{\operatorname{def}}{=}\left\|\left(\begin{array}{lll} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{array}\right)\right\|$	
Know that a Cartesian equation of a plane containing a point $P(x, y, z)$ is: $a x+b y+c z=d \quad(a, b, c, d, x, y, z \in \mathbb{R})$	
Know that the equation of a plane is not unique	
Determine whether or not a point lies on a plane	
Know that a vector is parallel to a plane if it lies in the plane	
Know that a normal vector is at right angles to any vector in the plane and is given by: $\mathrm{n}=\left(\begin{array}{l} a \\ b \\ c \end{array}\right)$	
Know that parallel planes have the same direction ratios for their normals	
Know that 2 planes are coincident if they have the same equation (possibly after simplifying one of the equations)	
Know that the angle between 2 planes is defined to be the acute angle between their normals	
Given 2 planes, calculate the angle between them	

Find an equation for a plane, given 3 points in the plane
Find an equation for a plane, given 2 vectors in the plane
Find an equation for a plane given 1 point on the plane and a normal to the plane
Calculate the distance between 2 planes
Know that, for a point A (with position vector a) in a plane, and 2 vectors b and c parallel to the plane, a vector equation
(aka parametric equation) of a plane for a point R
(with position vector r), where t and u are real parameters, is:
$\mathbf{r}=\mathbf{a}+t \mathbf{b}+u \mathbf{c}$
Find a vector equation for a plane
Convert between the 2 different types of equations for a plane
Know that a vector equation for a line in 3D with direction vector
$\mathbf{u}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ passing through a point $\mathrm{A}\left(x_{1}, y_{1}, z_{1}\right)$
and a general point $P(x, y, z)$ is:

$$
\mathbf{p}=\mathbf{a}+t \mathbf{u} \quad(t \in \mathbb{R})
$$

Know that the above equation can be written in parametric form as:

$$
x=x_{1}+a t, \quad y=y_{1}+b t, \quad z=z_{1}+c t
$$

Know that the above equation can be written in symmetric form (aka
standard form or canonical form), provided that none of a, b or c equal 0 , as:

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}=t
$$

Convert, where possible, between the 3 forms of a line equation

Know that a line equation is not unique	
Verify that a point lies on a line	
Given 2 points on a line, determine an equation for L	
Know that 2 lines are parallel if the direction ratios of their direction vectors are equal	
Know that 2 lines are coincident if they have the same equation (possibly after simplifying one of the equations)	
Given a point lying on a line L and a direction vector for L, determine an equation for L	
Given a point lying on a line L, and 2 vectors that are perpendicular to the direction of L, obtain the equation of L	
at a point or (iii) be skew (neither parallel nor intersecting)	

$\left.\begin{array}{|c|c|}\hline \begin{array}{r}\text { Given } 2 \text { lines, determine whether } \\ \text { or not they intersect }\end{array} & \\ \hline \begin{array}{c}\text { Given } 2 \text { lines (either both in parametric form, both in symmetric } \\ \text { form, or one in parametric form and the other in symmetric form) } \\ \text { that intersect, find their point of intersection }\end{array} & \\ \hline \begin{array}{c}\text { Given the equations of } 2 \text { lines, calculate the size of } \\ \text { the acute angle between them }\end{array} & \\ \hline \text { Calculate the shortest distance between } 2 \text { straight lines } & \\ \hline \text { Given a line and a point on a plane that is perpendicular to the line, } \\ \text { determine an equation of the plane }\end{array}\right]$

Further Sequences and Series

Skill	Achieved?
Know d'Alembert's ratio test (aka ratio test) for deciding whether a series of positive terms, $\sum_{n=1}^{\infty} u_{n}$, converges or diverges: $\begin{aligned} & \lim _{n \rightarrow \infty}\left(\frac{u_{n+1}}{u_{n}}\right)<1 \Rightarrow \text { series converges } \\ & \lim _{n \rightarrow \infty}\left(\frac{u_{n+1}}{u_{n}}\right)>1 \Rightarrow \text { series diverges } \\ & \lim _{n \rightarrow \infty}\left(\frac{u_{n+1}}{u_{n}}\right)=1 \Rightarrow \text { no conclusion } \end{aligned}$	
Know that a series (not necessarily one with all terms positive) $\sum_{n=1}^{\infty} u_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty}\left\|u_{n}\right\|$ converges	
Know that any absolutely convergent series is convergent	
Know that if $\sum_{n=1}^{\infty} u_{n}$ converges but $\sum_{n=1}^{\infty}\left\|u_{n}\right\|$ diverges, then $\sum_{n=1}^{\infty} u_{n}$ is said to be conditionally convergent	
Know that any rearrangement of an absolutely convergent series converges to the same limit	
Know the Riemann rearrangement theorem, namely, that any conditionally convergent series can be rearranged to converge to any real number, or rearranged to diverge	
Know that for absolute convergence, d'Alembert's ratio test is: $\begin{gathered} \lim _{n \rightarrow \infty}\left\|\frac{u_{n+1}}{u_{n}}\right\|<1 \Rightarrow \text { series converges absolutely } \\ \lim _{n \rightarrow \infty}\left\|\frac{u_{n+1}}{u_{n}}\right\|>1 \Rightarrow \text { series diverges } \end{gathered}$	

$\lim _{n \rightarrow \infty}\left\|\frac{u_{n+1}}{u_{n}}\right\|=1 \Rightarrow$ no conclusion	
Know that the x values for which a power series converges is called the interval of convergence	
Know that d'Alembert's ratio test for a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is: $\begin{gathered} \lim _{n \rightarrow \infty}\left\|\frac{a_{n+1} x}{a_{n}}\right\|<1 \Rightarrow \sum_{n=0}^{\infty} a_{n} x^{n} \text { converges absolutely } \\ \lim _{n \rightarrow \infty}\left\|\frac{a_{n+1} x}{a_{n}}\right\|>1 \Rightarrow \sum_{n=0}^{\infty} a_{n} x^{n} \text { diverges } \\ \lim _{n \rightarrow \infty}\left\|\frac{a_{n+1} x}{a_{n}}\right\|=1 \Rightarrow \text { no conclusion } \end{gathered}$	
Find S_{∞} for power series (stating the interval of convergence), for example: $\begin{gathered} S_{n}=1+3 x+5 x^{2}+7 x^{3}+\ldots+(2 n-1) x^{n-1}+\ldots \\ S_{n}=1+3 x+7 x^{2}+15 x^{3}+\ldots \end{gathered}$	
Know that the Maclaurin Series (aka Maclaurin Expansion) of a function f is the power series: $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$	
Know that a truncated Maclaurin series can be viewed as an approximation of a function by a polynomial	
Write down or find the Maclaurin series for: $\begin{gathered} e^{x} \\ \sin x \\ \cos x \\ \tan ^{-1} x \\ \ln (1+x) \end{gathered}$	

Know the range of validity of the above 5 Maclaurin series
Given the Maclaurin series for $f(x)$, obtain the Maclaurin series for $f(a x)(a \in \mathbb{R} \backslash\{0\})$, for example:
$e^{2 x}$
$\sin 3 x$
Evaluate Maclaurin series that are a combination of the above, for example:

$$
\begin{array}{cc}
(2+x) \ln (2+x) & \text { (first } 4 \text { terms) } \\
\ln (\cos x) & \text { (up to the term in } \left.x^{4}\right) \\
\sin ^{2} x & \text { (up to the term in } \left.x^{4}\right) \\
\cos ^{2} x & \text { (up to the term in } \left.x^{4}\right) \\
e^{x} \sin x & \text { (first } 3 \text { non-zero terms) } \\
e^{x+x^{2}} & \text { (up to the term in } \left.x^{4}\right) \\
\frac{1}{2} \cos 2 x & \text { (first } \left.3 \text { non-zero terms) the term in } x^{4}\right) \\
\frac{1}{2} \cos 6 x & \text { (first } 3 \text { non-zero terms) } \\
x \ln (2+x) \\
\frac{\text { (first } 3 \text { non-zero terms) }}{x \ln (2-x)} \begin{array}{l}
\text { (first } 2 \text { non-zero terms) } \\
\frac{x^{2}+6 x-4}{(x+2)^{2}(x-4)} \\
\text { (first } 2 \text { non-zero terms) } 3 \text { non-zero terms) } \\
\sqrt{(1+x)\left(1+x^{2}\right)}
\end{array} \\
\text { (first } 4 \text { terms) }
\end{array}
$$

Know, or derive, the binomial series (which is a Maclaurin series):

$(1+x)^{r}=\sum_{k=0}^{\infty}\binom{r}{k} x^{k} \quad(r \in \mathbb{R})$	
Use Maclaurin series to approximate values, for example: $\begin{gathered} \sin 0 \cdot 5 \\ e^{0 \cdot 6} \\ \cos 0 \cdot 3 \\ 1 \cdot 4^{\frac{1}{3}} \\ \ln 1 \cdot 1 \end{gathered}$	
Know that a recurrence relation is sometimes known as an iterative scheme	
Know that an iterative sequence is a sequence generated by an iterative scheme	
Know that each x_{n} is called an iterate	
Calculate iterates given an iterative scheme	
Know that a fixed point (aka convergent or limit) of an iterative scheme is a point a satisfying: $a=F(a)$	
Find fixed points of a recurrence relation, for example: $\begin{aligned} & x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{7}{x_{n}}\right) \\ & x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}^{2}}\right) \end{aligned}$	
Use an iterative scheme of the form $x_{n}=F\left(x_{n}\right)$ to solve an equation $f(x)=0$, where $x=F(x)$ is a rearrangement of the original equation	
Know that cobweb and staircase diagrams can be used to illustrate convergence (or divergence) of an iterative scheme	
Know that an iterative scheme has a fixed point if $\left\|\frac{d F}{d x}\right\|<1$, where the derivative is evaluated at any point x in a small region of the fixed point	

Further Differential Equations

Skill	Achieved?
Know that an $n^{\text {th }}$ order ordinary differential equation (ODE) is an equation containing (i) a function of a single variable and (ii) its derivatives up to the $n^{\text {th }}$ derivative	
Know that a linear ODE is one of the form: $\sum_{r=0}^{n} a_{r}(x) \frac{d^{(r)} y}{d x^{(r)}}=f(x)$	
Know that an $n^{\text {th }}$ order linear ODE with constant coefficients is of the above form, but where all the a_{r} are constant	
Know that if $f(x)=0$, the $D E$ is called homogeneous, whereas if $f(x) \neq 0$, the $D E$ is called non-homogeneous (or inhomogeneous)	
Know that a solution of a DE is a function that satisfies the DE	
Know that solutions of a DE are of 2 types: General solution Particular solutions	
Know that the general solution of a DE has arbitrary constants, whereas a particular solution has no arbitrary constants (as they are evaluated using initial conditions)	
Know that the solutions of a homogeneous equation are called complementary functions (CF)	
Know that a $1^{\text {st }}$ order linear ODE can be written in the form: $\frac{d y}{d x}+P(x) y=f(x)$	
Know that to solve a $1^{\text {st }}$ order linear ODE, the first step is to multiply the equation as written above by the integrating factor: $e^{\int \rho(x) d x}$	
Solve $1^{\text {st }}$ order linear ODEs using the integrating factor method, for example: $\frac{d y}{d x}+\frac{y}{x}=x$	

$\begin{gathered} x \frac{d y}{d x}-3 y=x^{4} \\ (x+1) \frac{d y}{d x}-3 y=(x+1)^{4} \end{gathered}$	
Find a particular solution of a differential equation that is solved using the integrating factor method	
Know that a $2^{\text {nd }}$ order linear ODE with constant coefficients can be written in the form (inhomogeneous equation): $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=f(x)$	
Know that the auxiliary equation (aka characteristic equation) of the above $D E$ is: $a p^{2}+b p+c=0 \quad(p \in \mathbb{C})$	
Know that the CF of the above DE can be written in one of 3 forms depending on the nature of the roots of the auxiliary equation	
Know that if the auxiliary equation has 2 real (distinct) roots p_{1} and p_{2}, then the $C F$ is of the form: $y_{C F}=A e^{\beta_{1} x}+B e^{p_{2} x} \quad(A, B \in \mathbb{R})$	
Know that if the auxiliary equation has 1 real (repeated) root p, then the CF is of the form: $y_{C F}=(A+B x) e^{p x} \quad(A, B \in \mathbb{R})$	
Know that if the auxiliary equation has a pair of complex (conjugate) roots $p_{1}=r+$ is and $p_{2}=r-i s$, then the $C F$ is of the form: $y_{C F}=e^{r x}(A \cos s x+B \sin s x) \quad(A, B \in \mathbb{R})$	
Know that a particular integral (PI) is a solution of the inhomogeneous equation and is chosen to be of a similar form as the function $f(x)$: $\begin{aligned} f(x)=C x+D & \rightarrow y_{P I}=S x+T \\ f(x)=C x^{2}+D x+E & \rightarrow y_{P I}=S x^{2}+T x+U \\ f(x)=C e^{p x} & \rightarrow y_{P I}=S e^{p x} \end{aligned}$	

$f(x)=C \sin p x \rightarrow y_{P I}=S \sin p x+T \cos p x$
$f(x)=C \cos p x \rightarrow y_{P I}=S \sin p x+T \cos p x$
Know slight variations of the last 3 PIs
with an additional constant:
$f(x)=C e^{p x}+D \rightarrow y_{P I}=S e^{p x}+T$
$f(x)=C \sin p x+D \rightarrow y_{P I}=S \sin p x+T \cos p x+U$
$f(x)=C \cos p x+D \rightarrow y_{P I}=S \sin p x+T \cos p x+U$
Know that if $f(x)$ is of the same form as a term in the CF, try the
same form as $x f(x)$ for the PI; if this is of the same form as a
term in the $C F$, try the same form as $x^{2} f(x)$ for the PI

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=0 \\
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=e^{x}+12 \\
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}-24 y=3 \sin x+4 \cos x+12 \\
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=e^{2 x}
\end{gathered}
$$

Find the particular solution of a $2^{\text {nd }}$ order linear ODE with constant coefficients given initial conditions, such as:

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=e^{x}+12 \\
\text { given that } y=2 \text { and } \frac{d y}{d x}=1 \text { when } x=0
\end{gathered}
$$

Number Theory and Further Proof Methods

Skill	Achieved?
Know that when $A \Rightarrow B, A$ is said to be sufficient for B and B is said to be necessary for A	
Know that in the biconditional $A \Leftrightarrow B, A$ is said to be necessary and sufficient for B (and vice versa)	
Prove statements involving finite sums by induction, for example: $\begin{gathered} 2+5+8+\ldots+(3 n-1)=\frac{1}{2} n(3 n+1) \quad(\forall n \in \mathbb{N}) \\ \sum_{r=1}^{n} 3\left(r^{2}-r\right)=(n-1) n(n+1) \quad(\forall n \in \mathbb{N}) \\ \sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}=\frac{1}{4}-\frac{1}{2(n+1)(n+2)} \quad(\forall n \in \mathbb{N}) \\ \sum_{r=1}^{n} \frac{1}{r(r+1)}=1-\frac{1}{(n+1)} \quad(\forall n \in \mathbb{N}) \end{gathered}$	
Prove statements involving matrices using induction, for example: $A=\left(\begin{array}{cc} 2 & 1 \\ -1 & 0 \end{array}\right) \Rightarrow A^{n}=\left(\begin{array}{cc} n+1 & n \\ -n & 1-n \end{array}\right) \quad(\forall n \in \mathbb{N})$ A, B square matrices with $A B=B A \Rightarrow A^{n} B=B A^{n} \quad(\forall n \in \mathbb{N})$	
Prove statements involving differentiation using induction, for example: $\frac{d^{n}}{d x^{n}}\left(x e^{x}\right)=(x+n) e^{x} \quad(\forall n \in \mathbb{N})$	
Prove other statements using induction, for example: $\begin{array}{cl} 2^{n}>n^{3} & (\forall n \geq 10) \\ 5^{n}+3 \text { is divisible by } 4 & (\forall n \in \mathbb{N}) \\ n!>n^{2} & (\forall n>3) \end{array}$	

$\left.\begin{array}{|c|c|}\hline 8^{n}+3^{n-2} \text { is divisible by } 5 \quad(\forall n \geq 2) & \\ \hline \begin{array}{r}\text { Know that the Division Algorithm states that, given } a, b \in \mathbb{N}, \\ \exists!q \text { (quotient), } r \text { (remainder) } \in \mathbb{N} \text { satisfying: }\end{array} & \\ \qquad a=b q+r \quad(0 \leq r<b)\end{array} \quad \begin{array}{r}\text { Know that the greatest common divisor }(G C D)(\text { sometimes called the } \\ \text { highest common factor) of } 2 \text { natural numbers is the biggest natural } \\ \text { number that exactly divides those } 2 \text { numbers; the } G C D \text { of } \\ a \text { and } b \text { is denoted } G C D(a, b)\end{array}\right]$
$\left.\begin{array}{|c|c|}\hline 4 x+12 y=13 \\ 8 x+40 y=11\end{array}\right]$

