Matrices

Skill	Achieved ?
Know that a <i>matrix</i> is a rectangular array of numbers (aka <i>entries</i>	
or <i>elements</i>) in parentheses, each entry being	
in a particular <i>row</i> and <i>column</i>	
Know that the <i>order</i> of a matrix is given as $m \times n$ (read m by n),	
where m is the number of rows and n the number	
of columns and is written as:	
$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \end{pmatrix}$	
$a_{21} a_{22} a_{23} \dots a_{2n}$	
$A \equiv (a_{ji})_{m \times n} \stackrel{a_{ij}}{=} a_{31} a_{32} a_{33} \dots a_{3n}$	
$\begin{bmatrix} a_{m1} & a_{m2} & a_{m3} & a_{mn} \end{bmatrix}$	
Know that the main diagonal (aka leading diagonal) of any	
matrix is the set of entries a where $i = i$	
$\frac{1}{10000000000000000000000000000000000$	
Know that the element in row / and column $\int ot a matrix is$	
written as a_{ij} and called the (1, j) entry of A	
Know that a <i>row matrix</i> is a $1 \times n$ matrix and is written as:	
$(a_{11} \ a_{12} \ \dots \ a_{1(n-1)} \ a_{1n})$	
Know that a <i>column matrix</i> is a $m \times 1$ matrix and is written as:	
(a,)	
$a_{(m-1)1}$	
$\left(\begin{array}{c}a_{m1}\end{array}\right)$	
Know that a <i>square matrix (of order m</i> $ imes$ <i>m</i> or just <i>of order m)</i> is a	
matrix with the same number of rows as columns	
(equal to <i>m</i>) and is written as:	
$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \end{pmatrix}$	
$a_{21} a_{22} \dots a_{2m}$	
$\begin{vmatrix} a_{-1} & a_{-2} & a_{} \end{vmatrix}$	
Know that the identity matrix (of and an m) is the my m matrix	
all of whose entries are 0 apart from those on the	

main diagonal, where they all equal 1:	
$I_{m} \stackrel{def}{=} \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \\ 0 & 0 & & 1 \end{pmatrix}$	
Know that the <i>zero matrix (of order m</i> $ imes$ <i>n)</i> is the	
$m \times n$ matrix all of whose entries are 0:	
$\mathcal{O}_{m \times n} \stackrel{def}{=} \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \\ 0 & 0 & 0 & & 0 \end{pmatrix}$	
Know that the <i>transpose</i> of an $m \times n$ matrix A (denoted A^{\top}) is	
the $n \times m$ matrix obtained by interchanging the rows and columns of $A((a^{T}))$, denotes the $(i, j)^{\text{th}}$ entry of A^{T}):	
$(\mathbf{a}^{T})_{ij} \stackrel{def}{=} \mathbf{a}_{ji}$	
Obtain the transpose of any matrix	
Know that 2 matrices are equal if they both have the same order	
and all corresponding entries are equal	
Know that matrices can be added or subtracted	
only if they have the same order	
Add or subtract 2 matrices A and B (thus obtaining the <i>matrix sum</i> A + B or <i>matrix difference</i> $A - B$) by adding or subtracting the corresponding entries of each matrix $((a \pm b)_{ij})$ denotes	
the (<i>i</i> , <i>j</i>) th entry of the sum or difference):	
$(a \pm b)_{ij} \stackrel{def}{=} a_{ij} \pm b_{ij}$	
Add or subtract more than 2 matrices	
Multiply any matrix A by a real scalar k (thus obtaining the scalar	
<i>multiplication kA</i>) by multiplying each entry of A by k	
$((ka)_{ii})$ denotes the $(i, j)^{\text{th}}$ entry of kA):	
$(ka)_{ij} \stackrel{def}{=} ka_{ij} (k \in \mathbb{R})$	
Scalar multiply a matrix by a real scalar	
Know, use and verify the following matrix properties (for $k \in \mathbb{R}$):	

A + B = B + A	
(A + B) + C = A + (B + C)	
k(A + B) = kA + kB	
$(\boldsymbol{A} + \boldsymbol{B})^{T} = \boldsymbol{A}^{T} + \boldsymbol{B}^{T}$	
$(\mathcal{A}^{T})^{T} = \mathcal{A}$	
$(kA)^{T} = kA^{T}$	
Know that 2 matrices A and B can only be multiplied in the order A times B (thus obtaining the <i>matrix product</i> AB) if the number of columns of A equals the number of rows of B	
Multiply 2 matrices A (of order $m \times n$) and B (of order $n \times p$)	
according to the rule, where $(ab)_{ij}$ denotes	
the $(I, J)^m$ entry of AB:	
$(ab)_{ij} \stackrel{def}{=} \sum_{k=1}^{n} a_{ik} b_{kj}$	
$(1 \le i \le m \text{ and } 1 \le j \le p)$	
Know that, in general:	
$AB \neq BA$	
Know that when forming AB, we say that B is pre-multiplied by A, or A is post-multiplied by B	
Multiply 2 or more matrices where <i>m</i> and <i>n</i> are at most equal to 3	
Know that a (square) matrix A can be multiplied by itself any number	
of times (thus obtaining <i>the nth power of A</i>):	
$A^n \stackrel{def}{=} \underbrace{A \times A \times A \times \dots \times A}_{n \text{ times}}$	
Know, use and verify the following matrix properties:	
A(BC) = (AB)C	
A(B + C) = AB + AC	
$(\mathcal{A}\mathcal{B})^{T} = \mathcal{B}^{T}\mathcal{A}^{T}$	
Know that a matrix A is symmetric if $A^{\top} = A$ (thus, A is square)	
Know that a symmetric matrix is symmetrical about the main diagonal	

Know that a matrix A is <i>skew-symmetric</i> (aka <i>anti-symmetric</i>)	
if $A^{T} = -A$ (thus, A is square)	
Know that a skew-symmetric matrix has all	
main diagonal entries equal to O	
Know that a square matrix A (of order $n \times n$) is orthogonal if:	
$A^{T}A = I_{n}$	
Know that a system of <i>m</i> equations in <i>n</i> variables may be written in	
matrix form, where A is the $m \times n$ matrix of coefficients	
(aka <i>coefficient matrix</i>), x is the $n \times 1$ <i>solution vector</i>	
and b an $m \times 1$ column vector as:	
$A \mathbf{x} = \mathbf{b}$	
Know that for an $n \times n$ matrix A, the minor of entry a_{ij} is the	
determinant (denoted M_{ii}) of the ($n - 1$) $ imes$ ($n - 1$) matrix	
formed from A by deleting the i^{th} row and j^{th} column of A	
Know that the <i>cofactor</i> of entry <i>a_{ii}</i> is the quantity:	
$\mathcal{L}_{ij} = (-1) \circ \mathcal{M}_{ij}$	
Know that for the determinant of a general $n \times n$ matrix is given	
by the Laplace expansion formula:	
daf <u>n</u>	
det (A) = $ A = \sum_{ij} a_{ij} C_{ij}$ (i = 1, 2, 3,, n)	
j = 1	
Know that a system of n equations in n unknowns has a solution if	
the determinant of the coefficient matrix is non-zero	
Know that the determinant of a 1 \times 1 matrix is:	
4 - (a) - a	
$ \mathcal{T} = (\mathcal{U}) - \mathcal{U}$	
Know that the determinant of a 2 \times 2 matrix is:	
$ A \equiv \begin{vmatrix} a & b \\ c & a \end{vmatrix} = ad - bc$	
Calculate the determinant of any 2×2 matrix	
Know that the determinant of a 3 \times 3 matrix is:	
$ ^{n} = \ a e i \ = a \ h i \ - b \ g i \ + c \ g h \ $	

Calculate the determinant of any 3 $ imes$ 3 matrix	
Know that an $n imes n$ matrix A has an <i>inverse</i> if there	
is a matrix (denoted \mathcal{A}^{-1}) such that:	
$AA^{-1} = I_n$ or $A^{-1}A = I_n$	
Know that there is only 1 inverse (if it exists) for any given matrix	
Know that a matrix is <i>invertible</i> (aka <i>non-singular</i>)	
if it has an inverse	
Know that if a matrix does not have an inverse, then it	
is said to be <i>non-invertible</i> (aka <i>singular</i>)	
Know that a matrix is invertible iff det (A) $\neq 0$	
Know that a matrix is non-invertible iff det $(A) = 0$	
Given a missing variable in a 2 $ imes$ 2 or 3 $ imes$ 3 matrix, obtain the	
value(s) of this variable for which the matrix	
is singular or non-singular	
Know that the <i>cofactor matrix</i> of square matrix A is	
the matrix C whose (<i>i</i> , <i>j</i>) th entry is C_{ij}	
Know that the <i>adjugate</i> (aka <i>classical adjoint</i>) of a square matrix A	
is the transpose of the cofactor matrix C :	
$di(A) \stackrel{def}{=} C^{T}$	
$uu_j(A) = c$ Know that the inverse of a matrix A is given by:	
Know that the liver se of a matrix A is given by.	
adi (A)	
$A^{-1} = \frac{\operatorname{deg}(A)}{\operatorname{deg}(A)}$	
Calculate the inverse of a 2 x 2 matrix using the formula:	
1 (d - b)	
$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} a & b \\ c & a \end{bmatrix}$	
Know, use and verity the following matrix properties:	
$ AB - A \times B $	
$ ka - k^n a $ $(k \in \mathbb{R}, n \in \mathbb{N}, A \in n \times n)$	
$ \Lambda \sigma = \Lambda \sigma (\Lambda \in \mathbb{R}, n \in \mathbb{N}, \sigma \in \mathbb{N}, \sigma \in \mathbb{N})$	
$\left \mathcal{A}^{-1} \right = \frac{1}{\left \mathcal{A} \right }$	

$(\mathcal{A}^{-1})^{-1} = \mathcal{A}$	
$(\mathcal{A}^{-1})^{\top} = (\mathcal{A}^{\top})^{-1}$	
$(k\mathcal{A}^{-1}) = \frac{1}{k}\mathcal{A}^{-1}$	
$(A B)^{-1} = B^{-1} A^{-1}$	
Calculate the inverse of a 3×3 matrix using EROs by forming a big	
Augmented matrix consisting of A on the LHS and the identity	
matrix on the right, then row reducing the Augmented	
Matrix until the identity is reached on the left	
and whatever remains on the RHS is A	
Know that a system of equations $A \mathbf{x} = \mathbf{b}$ can be solved by	
premultiplying each side of this equation by A , and so	
The solution vector is obtained as.	
$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$	
Know that a <i>linear transformation in the plane</i> is a function that	
sends a point $P(x, y)$ to a point $Q(ax + by, cx + dy)$	
for $a, b, c, d \in \mathbb{R}$	
Know that a linear transformation in the plane can	
be described as a matrix equation:	
$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \end{pmatrix} \stackrel{def}{=} \begin{pmatrix} a\mathbf{x} + b\mathbf{y} \\ c\mathbf{x} + d\mathbf{y} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$	
Know that in the above equation, the matrix with entries	
a, b, c and d is called the <i>transformation matrix</i>	
Know that if a transformation is represented by a matrix A , then the	
reverse of that transformation is represented by A^{-1}	
Know that a transformation matrix can be obtained by considering	
the effect of a geometrical transformation	
on the points $(0, 1)$ and $(1, 0)$	
Know that an <i>invariant point</i> is one that has the	
Same image under a transformation	
Find invariant points of a given transformation	
by solving the equation.	
$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$	
Know that a <i>reflection in the line</i> $v = x$	

has transformation matrix:	
$\begin{pmatrix} 0 & 1 \end{pmatrix}$	
$\begin{pmatrix} 1 & 0 \end{pmatrix}$	
Know that an <i>anticlockwise rotation of angle θ (about the origin)</i>	
has transformation matrix:	
$(\cos \theta - \sin \theta)$	
$(\sin \theta \cos \theta)$	
Know that a <i>dilatation</i> (aka <i>scaling</i>) has transformation matrix:	
$\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \qquad (k \in \mathbb{R})$	
Derive transformation matrices for other geometrical	
transformations, for example:	
Reflection in the line $y = -x$	
Reflection in the x - axis	
Deflection in the v-axis	
Reflection in the y axis	
Half-turn anticlockwise about the origin	
Quarter-turn clockwise about the origin	
Know that a combination of transformations is	
found by matrix multiplication	
Derive the transformation matrix of a combination of	
transformations, and describe the effect this	
combination has on a given point, for example:	
noflection in the second then outinded by a station of 200	
reflection in the x - axis, then anti-clockwise rotation of 30	
anti-clockwise rotation of $\frac{\pi}{2}$ radians, then reflection in the x-axis	
enlargement of scale factor 2, then a clockwise rotation of 60°	
Find the equation of the image of a given curve (possibly giving the	
answer in implicit form) under a given transformation	

Vectors, Planes and Lines

Skill	Achieved ?
Know that the <i>direction ratio</i> of a vector is the ratio of its	
components in the order x : y (: z)	
Determine the direction ratio of a vector	
Know that 2 vectors with the same direction ratio are parallel	
Know that if $lpha$, eta and γ are the angles the vector v makes with the	
x, y and z axes, and u is a unit vector in the direction of v ,	
then cos $lpha$, cos eta and cos γ are the	
<i>direction cosines</i> of v and:	
$\mathbf{u} = \begin{pmatrix} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{pmatrix} \implies \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$	
Determine the direction cosines of a vector	
Know that the <i>vector product</i> (aka <i>cross product</i>) of 2 vectors	
a and b , where θ is the angle from a to b , and n is a unit	
vector at right angles to both a and b , is defined as:	
$\mathbf{a} \times \mathbf{b} \stackrel{\text{def}}{=} \mathbf{a} \mathbf{b} \sin \theta \mathbf{n}$	
Know that the vector product is only defined in 3D and a x b is a	
Know that the vector product is a vector not a scalar	
Know that the 3 unit vectors i i and k satisfy:	
Know that the 5 diff vectors, 1, j and k suffsty.	
i x j = k	
j×k = i	
k x i = j	
and	
$i \times i = j \times j = k \times k = 0$	
Know the following properties of the vector product:	
a × a = 0	
a x b = -b x a	

$a \times (b + c) = (a \times b) + (a \times c)$	
$(a + b) \times c = (a \times c) + (b \times c)$	
Know that if the vector product of 2 vectors is 0 ,	
then they are parallel	
Know that if 2 non-zero vectors are parallel, then	
their vector product is O	
Given the components of 2 vectors, calculate their vector product	
using the <i>component form of the vector product</i> :	
a x b = $(a_2b_3 - a_3b_2)$ i + $(a_3b_1 - a_1b_3)$ j + $(a_1b_2 - a_2b_1)$ k	
Given the magnitude of 2 vectors and the angle between them,	
calculate their vector product	
Given 2 vectors in component form and the angle between them,	
calculate their vector product	
Given 2 vectors in component form, calculate their vector product	
Calculate the <i>scalar triple product</i> of 3 vectors using:	
$[\mathbf{a}, \mathbf{b}, \mathbf{c}] \equiv \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \stackrel{def}{=} \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$	
Know that a <i>Cartesian equation of a plane</i> containing	
a point P(x, y, z) is:	
a_{1} , b_{2} , a_{2} , d_{3} ($a, b, a, d, x, y, z \in \mathbb{D}$)	
$\frac{dx + by + cz}{dx + by + cz} = \frac{d}{dx} (d, b, c, d, x, y, z \in \mathbb{R})$	
Know that the equation of a plane is not unique	
Determine whether or hold point lies on a plane	
Know that a vector is parallel to a plane if it lies in the plane	
know that a normal vector is at right angles to any vector in the	
plane and is given by:	
$\mathbf{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$	
Know that parallel planes have the same	
direction ratios for their normals	
Know that 2 planes are coincident if they have the same equation	
(possibly after simplifying one of the equations)	
Know that the angle between 2 planes is defined to be	
the acute angle between their normals	
Given 2 planes, calculate the angle between them	

Find an equation for a plane, given 3 points in the plane	
Find an equation for a plane, given 2 vectors in the plane	
Find an equation for a plane given 1 point on the plane	
and a normal to the plane	
Calculate the distance between 2 planes	
Know that, for a point A (with position vector a) in a plane, and 2	
vectors b and c parallel to the plane, a <i>vector equation</i>	
<i>(aka parametric equation) of a plane</i> for a point R	
(with position vector \mathbf{r}), where t and u	
are real parameters, is:	
$\mathbf{r} = \mathbf{a} + t\mathbf{b} + u\mathbf{c}$	
Find a vector equation for a plane	
Convert between the 2 different types of equations for a plane	
Know that a <i>vector equation for a line</i> in 3D with <i>direction vector</i>	
$\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ passing through a point $A(x_1, y_1, z_1)$	
and a general point $P(x, y, z)$ is:	
$\mathbf{p} = \mathbf{a} + t \mathbf{u} \qquad (t \in \mathbb{R})$	
Know that the above equation can be written in <i>parametric form</i> as:	
$x = x_1 + at, y = y_1 + bt, z = z_1 + ct$	
Know that the above equation can be written in <i>symmetric form</i> (aka	
<i>standard form</i> or <i>canonical form</i>), provided that	
none of a, b or c equal 0, as:	
$\frac{x - x_1}{1} = \frac{y - y_1}{1} = \frac{z - z_1}{1} = t$	
a b c	
Convert, where possible, between the 3 forms of a line equation	
Know that a line equation is not unique	
Verify that a point lies on a line	
Given 2 points on a line, determine an equation for L	
Know that 2 lines are parallel if the direction ratios	
of their direction vectors are equal	
Know that 2 lines are coincident if they have the same equation	
(possibly after simplifying one of the equations)	
Given a point lying on a line L and a direction vector for L,	
determine an equation for L	
Given a point lying on a line L, and 2 vectors that are perpendicular to	
the direction of L, obtain the equation of L	
Know that non-coincident lines in 3D may (i) be parallel (ii) intersect	
at a point or (iii) be <i>skew</i> (neither parallel nor intersecting)	

Given 2 lines, determine whether	
or not they intersect	
Given 2 lines (either both in parametric form, both in symmetric	
form, or one in parametric form and the other in symmetric form)	
that intersect, find their point of intersection	
Given the equations of 2 lines, calculate the size of	
the acute angle between them	
Calculate the shortest distance between 2 straight lines	
Given a line and a point on a plane that is perpendicular to the line,	
determine an equation of the plane	
Calculate the angle between a line and a plane	
Calculate the intersection point of a line and a plane	
Determine the shortest distance between a point on a plane and a	
line perpendicular to a normal of the plane	
Know that 2 non-coincident planes may either (i) not intersect	
or (ii) intersect in a straight line	
Given 2 planes, determine whether or not they intersect	
Given 2 intersecting planes, find their line of intersection	
Know that the intersection of 3 planes can be modelled by a system	
of 3 equations in 3 variables and the possibilities are:	
Unique intersection point	
1 line of intersection	
2 parallel lines of intersection	
3 parallel lines of intersection	
1 plane of intersection	
no intersection	
Find the intersection of 3 planes	

Further Sequences and Series

Skill	Achieved ?
Know d'Alembert's ratio test (aka <i>ratio test</i>) for deciding	
whether a series of positive terms, $\sum_{n=1}^{\infty} u_n$,	
converges or diverges:	
$\lim_{n \to \infty} \left(\frac{u_{n+1}}{u_n} \right) < 1 \implies \text{series converges}$	
$\lim_{n \to \infty} \left(\frac{u_{n+1}}{u_n} \right) > 1 \implies \text{series diverges}$	
$\lim_{n \to \infty} \left(\frac{u_{n+1}}{u_n} \right) = 1 \implies \text{no conclusion}$	
Know that a series (not necessarily one with all terms positive)	
$\sum_{n=1}^{\infty} u_n \text{ is absolutely convergent if } \sum_{n=1}^{\infty} u_n \text{ converges}$	
Know that any absolutely convergent series is convergent	
Know that if $\sum_{n=1}^{\infty} u_n$ converges but $\sum_{n=1}^{\infty} u_n $ diverges, then	
$\sum_{n=1}^{\infty} u_n$ is said to be <i>conditionally convergent</i>	
Know that any rearrangement of an absolutely convergent series converges to the same limit	
Know the <i>Riemann rearrangement theorem</i> , namely, that any	
conditionally convergent series can be rearranged to converge	
to any real number, or rearranged to diverge	
Know that for absolute convergence, d'Alembert's ratio test is:	
$\lim_{n \to \infty} \left \frac{u_{n+1}}{u_n} \right < 1 \implies \text{ series converges absolutely}$	
$\lim_{n \to \infty} \left \frac{u_{n+1}}{u_n} \right > 1 \implies \text{series diverges}$	

$\lim_{n \to \infty} \left \frac{u_{n+1}}{u_n} \right = 1 \implies \text{no conclusion}$	
Know that the x values for which a power series converges	
is called the <i>interval of convergence</i>	
Know that d'Alembert's ratio test for a power series $\sum_{n=0}^{\infty} a_n x^n$ is:	
$\lim_{n \to \infty} \left \frac{a_{n+1} x}{a_n} \right < 1 \implies \sum_{n=0}^{\infty} a_n x^n \text{ converges absolutely}$	
$\lim_{n \to \infty} \left \frac{a_{n+1} x}{a_n} \right > 1 \implies \sum_{n=0}^{\infty} a_n x^n \text{ diverges}$	
$\lim_{n \to \infty} \left \frac{a_{n+1} x}{a_n} \right = 1 \implies \text{no conclusion}$	
Find $\mathcal{S}_{_{\!\!\infty}}$ for power series (stating the interval of convergence),	
for example:	
$S_n = 1 + 3x + 5x^2 + 7x^3 + + (2n - 1)x^{n-1} +$	
$S_n = 1 + 3x + 7x^2 + 15x^3 + \dots$	
Know that the <i>Maclaurin Series</i> (aka <i>Maclaurin Expansion</i>)	
of a function <i>f</i> is the power series:	
$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$	
Know that a truncated Maclaurin series can be viewed as	
an approximation of a function by a polynomial	
Write down or find the Maclaurin series for:	
e×	
sin x	
cos x	
tan ⁻¹ x	
$\ln (1 + x)$	

Know the range of validity of the above 5 Maclaurin series	
Given the Maclaurin series for $f(x)$, obtain the Maclaurin series	
for $f(ax)$ $(a \in \mathbb{R} \setminus \{0\})$, for example:	
e ^{2x}	
E C	
cin 3 v	
Sin SX Evaluate Mealeurin device that are a combination	
Evaluate Maciaurin series that are a combination	
of the above, for example:	
$(2 + x) \ln (2 + x)$ (first 4 terms)	
In (cos x) (up to the term in x^4)	
$\sin^2 x$ (up to the term in x^4)	
$\cos^2 x$ (up to the term in x^4)	
$e^{sin x}$ (first 3 non-zero terms)	
e^{x+x^2} (up to the term in x^4)	
1 (1)	
$\frac{1}{2}$ cos 2x (up to the term in x ⁺)	
1 (())	
$\frac{1}{2}\cos 6x$ (first 3 non-zero terms)	
$v \ln (2 \pm v)$ (first 3 non-zero terms)	
$\lambda \ln (2 + \lambda)$ (1131 3 101-2010 101 m3)	
x in $(2 - x)$ (first 3 non-zero terms)	
$x \ln (4 - x^2)$ (first 2 non-zero terms)	
$x^2 + 6x - 4$ (first 2 non-zero terms)	
$\frac{1}{(x+2)^2(x-4)}$	
$1 + \sin^2 x$ (first 3 non-zero terms)	
$\sqrt{(1 + x)(1 + x^2)}$ (first 4 terms)	
Know, or derive, the <i>binomial series</i> (which is a Maclaurin series):	

$(1 + x)^r = \sum_{k=0}^{\infty} {\binom{r}{k} x^k} (r \in \mathbb{R})$	
Use Maclaurin series to approximate values, for example:	
sin 0 · 5	
e ^{0 · 6}	
cos 0 · 3	
$1 \cdot 4^{\frac{1}{3}}$	
ln 1 · 1	
Know that a recurrence relation is sometimes	
known as an <i>iterative scheme</i>	
Know that an <i>iterative sequence</i> is a sequence	
generated by an iterative scheme	
Know that each X_n is called an <i>iterate</i>	
Calculate iterates given an iterative scheme	
Know that a <i>fixed point</i> (aka <i>convergent</i> or <i>limit</i>) of an	
iterative scheme is a point <i>a</i> satistying:	
a = F(a)	
Find fixed points of a recurrence relation, for example:	
$\boldsymbol{x}_{n+1} = \frac{1}{2} \left(\boldsymbol{x}_n + \frac{7}{\boldsymbol{x}_n} \right)$	
$\boldsymbol{x}_{n+1} = \frac{1}{2} \left(\boldsymbol{x}_n + \frac{2}{\boldsymbol{x}_n^2} \right)$	
Use an iterative scheme of the form $x_n = F(x_n)$ to solve an	
equation $f(x) = 0$, where $x = F(x)$ is a rearrangement	
of the original equation	
Know that <i>cobweb and staircase diagrams</i> can be used to illustrate	
convergence (or divergence) of an iterative scheme	
Know that an iterative scheme has a fixed point if $\left \frac{dF}{dx}\right < 1$, where	
the derivative is evaluated at any point x in a	
small region of the fixed point	

Further Differential Equations

Skill	Achieved ?
Know that an <i>n th order ordinary differential equation (ODE)</i> is an	
equation containing (i) a function of a single variable and	
(ii) its derivatives up to the n^{th} derivative	
Know that a <i>linear ODE</i> is one of the form:	
$\sum_{r=0}^{n} a_{r}(x) \frac{d^{(r)}y}{dx^{(r)}} = f(x)$	
Know that an <i>n th order linear ODE with constant coefficients</i> is	
of the above form, but where all the a_r are constant	
Know that if $f(x) = 0$, the DE is called <i>homogeneous</i> , whereas if	
$f(x) \neq 0$, the DE is called <i>non-homogeneous</i> (or <i>inhomogeneous</i>)	
Know that a <i>solution</i> of a DE is a function that satisfies the DE	
Know that solutions of a DE are of 2 types:	
General solution	
Particular solutions	
Know that the general solution of a DE has <i>arbitrary constants</i> ,	
whereas a particular solution has no arbitrary constants	
(as they are evaluated using <i>initial conditions</i>)	
Know that the solutions of a homogeneous equation	
are called <i>complementary functions (CF)</i>	
Know that a 1° order linear ODE can be written in the form:	
$\frac{dy}{dx} + P(x)y = f(x)$	
Know that to solve a 1 st order linear ODE, the first step is to	
multiply the equation as written above	
by the <i>integrating factor</i> :	
$e^{\int P(x) dx}$	
Solve 1 st order linear ODEs using the integrating factor	
method, for example:	
$\frac{dy}{dx} + \frac{y}{dx} = x$	
dx + x = 2	

$x \frac{dy}{dx} - 3y = x^4$	
$(x + 1) \frac{dy}{dx} - 3y = (x + 1)^4$	
Find a particular solution of a differential equation that is solved	
using the integrating factor method	
Know that a 2 nd order linear ODE with constant coefficients	
can be written in the form (inhomogeneous equation):	
$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$	
Know that the <i>auxiliary equation</i> (aka <i>characteristic equation</i>)	
of the above DE is:	
$a p^2 + b p + c = 0 (p \in \mathbb{C})$	
Know that the CF of the above DE can be written in one of 3 forms	
depending on the nature of the roots of the auxiliary equation	
Know that if the auxiliary equation has 2 real (distinct) roots	
$p_{\!_1}$ and $p_{\!_2}$, then the CF is of the form:	
$\boldsymbol{y}_{\mathcal{CF}} = \boldsymbol{A} \boldsymbol{e}^{\boldsymbol{p}_{1} \boldsymbol{x}} + \boldsymbol{B} \boldsymbol{e}^{\boldsymbol{p}_{2} \boldsymbol{x}} (\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R})$	
Know that if the auxiliary equation has 1 real (repeated) root <i>p</i> ,	
then the CF is of the form:	
$y_{CF} = (A + Bx) e^{px}$ $(A, B \in \mathbb{R})$	
Know that if the auxiliary equation has a pair of complex (conjugate)	
roots $p_1 = r + is$ and $p_2 = r - is$, then the CF is of the form:	
$y_{CF} = e^{rx}(A \cos sx + B \sin sx) (A, B \in \mathbb{R})$	
Know that a <i>particular integral (PI)</i> is a solution of the	
inhomogeneous equation and is chosen to be of	
a similar form as the function <i>f(x)</i> :	
$f(x) = Cx + D \rightarrow \gamma_{\rho_T} = Sx + T$	
$f(x) = C x^2 + D x + E \rightarrow y_{\rho_I} = S x^2 + T x + U$	
$f(x) = C e^{px} \rightarrow y_{\rho I} = S e^{px}$	

AH Checklist (Unit 3)	AH Checklist (Unit 3)
$f(x) = C \sin px \rightarrow \gamma_{\rho_I} = S \sin px + T \cos px$	
$f(x) = C \cos px \rightarrow y_{\rho_{I}} = S \sin px + T \cos px$	
Know slight variations of the last 3 PIs	
with an additional constant:	
$f(x) = C e^{px} + D \rightarrow \gamma_{PI} = S e^{px} + T$	
$f(x) = C \sin px + D \rightarrow y_{\rho I} = S \sin px + T \cos px$	+ U
$f(x) = C\cos px + D \rightarrow \gamma_{\rho_I} = 5\sin px + T\cos px$	+ <i>U</i>
Know that if $f(x)$ is of the same form as a term in the CF, try	y the
same form as $xf(x)$ for the PI; if this is of the same form a	is a
term in the CF, try the same form as $x^2 f(x)$ for the PI	
Know that the general solution of the inhomogeneous equation	n is:
$\mathbf{y}_{G} = \mathbf{y}_{CF} + \mathbf{y}_{PI}$	
Find the general solution of 2 nd order linear ODEs	
with constant coefficients, for example:	
$\frac{d^2 y}{dx^2} + 2 \frac{dy}{dx} - 3y = 6x - 1$	
$d^2 y$ dy z	
$\frac{1}{dx^2} + 2\frac{1}{dx} + 5y = 4\cos x$	
$\frac{d^2 y}{dx^2} - 4 \frac{dy}{dx} + 4 y = e^x$	
$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 20\sin x$	
$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$	
$\frac{d^2 y}{dx^2} + 6 \frac{dy}{dx} + 9 y = e^{2x}$	
$\frac{d^2 y}{dx^2} - 3 \frac{dy}{dx} + 2y = 2x^2$	

$\frac{d^2 y}{dx^2} + 4 \frac{d y}{dx} + 5 y = 0$	
$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = e^x + 12$	
$\frac{d^2 y}{dx^2} - 5 \frac{dy}{dx} - 24 y = 3 \sin x + 4 \cos x + 12$	
$\frac{d^2 y}{dx^2} - \frac{d y}{dx} - 2 y = e^{2x}$	
Find the particular solution of a 2 nd order linear ODE with	
constant coefficients given initial conditions, such as:	
$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = e^x + 12$	
given that $y = 2$ and $\frac{dy}{dx} = 1$ when $x = 0$.	

Number Theory and Further Proof Methods

Skill	Achieved ?
Know that when $A \Rightarrow B$, A is said to be <i>sufficient</i> for B and	
B is said to be <i>necessary</i> for A	
Know that in the biconditional A \Leftrightarrow B, A is said to be	
necessary and sufficient for B (and vice versa)	
Prove statements involving finite sums by induction, for example:	
2 + 5 + 8 + + $(3n - 1) = \frac{1}{2}n(3n + 1) (\forall n \in \mathbb{N})$	
$\sum_{r=1}^{n} 3(r^{2} - r) = (n - 1)n(n + 1) (\forall n \in \mathbb{N})$	
$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{1}{4} - \frac{1}{2(n+1)(n+2)} (\forall n \in \mathbb{N})$	
$\sum_{r=1}^{n} \frac{1}{r(r+1)} = 1 - \frac{1}{(n+1)} (\forall n \in \mathbb{N})$	
Prove statements involving matrices using induction, for example:	
$\mathcal{A} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \implies \mathcal{A}^{n} = \begin{pmatrix} n+1 & n \\ -n & 1-n \end{pmatrix} \qquad (\forall n \in \mathbb{N})$	
A, B square matrices with $AB = BA \implies A^n B = BA^n (\forall n \in \mathbb{N})$	
Prove statements involving differentiation using induction, for example:	
$\frac{d^n}{dx^n} (x e^x) = (x + n) e^x \qquad (\forall n \in \mathbb{N})$	
Prove other statements using induction, for example:	
$2^n > n^3$ ($\forall n \ge 10$)	
$5^n + 3$ is divisible by 4 ($\forall n \in \mathbb{N}$)	
$n! > n^2 \qquad (\forall n > 3)$	

$8^n + 3^{n-2}$ is divisible by 5 ($\forall n \ge 2$)	
Know that the <i>Division Algorithm</i> states that, given $a, b \in \mathbb{N}$,	
$\exists ! q (quotient), r (remainder) \in \mathbb{N}$ satisfying:	
$a = bq + r \qquad (0 \le r < b)$	
Know that the <i>greatest common divisor (GCD)</i> (sometimes called the	
highest common factor) of 2 natural numbers is the biggest natural	
number that exactly divides those 2 numbers; the GCD of	
a and b is denoted GCD(a, b)	
Know that when $a = bq + r$, $GCD(a, b) = GCD(b, r)$	
Know that repeated application of the Division Algorithm until the	
GCD is reached is called the <i>Euclidean Algorithm</i>	
Use the Euclidean Algorithm to find the GCD of 2 numbers	
Know that $GCD(a, b)$ can be written as $GCD(a, b) = ax + by$	
Use the Euclidean Algorithm to write the GCD in the above form	
Know that numbers are <i>coprime</i> (aka <i>relatively prime</i>)	
if their $GCD = 1$	
Use the Euclidean Algorithm to find integers x and y such that:	
149 x + 139 y = 1	
231 x + 17 y = 1	
599 x + 53 y = 1	
Know that a <i>linear Diophantine equation</i> is an equation of the form:	
$ax + by = c$ $(a, b, c, x, y \in \mathbb{Z})$	
Know that a linear Diophantine equation of the above form	
has a solution provided that GCD(a, b) divides c	
Know that if a linear Diophantine equation has a solution,	
then it has infinitely many solutions	
Solve linear Diophantine equations using the	
Euclidean Algorithm, for example:	
4x + 3y = 8	
5x + 7y = 14	
15x + 27y = 21	
Show that given linear Diophantine equations do not have any	
solutions, for example:	

4x + 12y = 13	
8x + 40y = 11	
Know that any number may be written uniquely in base <i>n</i> as:	
$\sum_{i=0}^{n} r_{k-i} n^{k-i} \equiv (r_k r_{k-1} \dots r_2 r_1 r_0)_n$	
Know that digits bigger than 9 are given by the abbreviations	
A = 10, B = 11, C = 12, D = 13, E = 14 etc.	
Use the Division Algorithm to convert a number in base 10	
to another base by obtaining remainders	
Convert a number written in non-base 10 to base 10, for example:	
$(202)_{3} = (20)_{10}$	
$(4E)_{17} = (82)_{10}$	
Convert a number written in base 10 to non-base 10, for example:	
$(231)_{10} = (450)_7$	
$(59)_{10} = (47)_{13}$	
Convert a number from one base to another, neither	
of which are base 10, by going through	
base 10 first,for example:	
$(1\ 021)_4 = (73)_{10} = (81)_9$	
$(1\ 010\ 011\ 010)_2 = (666)_{10} = (556)_{11}$	
$(5D)_{16} = (93)_{10} = (333)_{5}$	
$(5A)_{12} = (70)_{10} = (55)_{13}$	