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FORMULAE  LIST    
 
 
The equation     represents a circle centre  02222 =++++ cfygxyx ( , )− −g f   and radius 

( )g f c2 2+ − . 
 
 
The equation      represents a circle centre  ( a , b )  and radius  r. ( ) ( )x a y b r− + − =2 2 2

 
 
Scalar Product: a b a b a b. cos , .= θ θwhere is the angle between and  
 
   or 

   a b. = a b a b a b where a
a
a
a

and b
b
b
b
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Trigonometric formulae: 

 
 
Table of standard derivatives: 

        axsin
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Table of standard integrals: 
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 All questions should be attempted
 
 
1. Given that  are two roots of the equation  ,  1and2 =−= xx 0623 =+−+ qxpxx

establish the values of  p  and  q  and hence find the third root of the equation.   (5) 
        
 
 
 
 
2. A sequence is defined by the recurrence relation   8601 +⋅=+ nn UU   . 
 

(a) Explain why this sequence has a limit as  n → ∞  .      (1)  
 
 (b) Find the limit of this sequence.        (2) 
 

(c) Given that  31 =− UL , where L is the limit of this sequence, establish the  
  value of U0 , the intitial value.         (3) 
 
 
 
 
 
3. A function is defined as     . θθθ 2cos2cos2)( 2 −=g
 

Show that  )(θg′   can be written in the form  
 
     θθ 2sin2)( =′g        (5) 
 
 
 
 
 
4. The line with equation   meets the x and the y axes at the points 123 =+ yx
 A and B respectively. 
 
 

123 =+ yx
o 

y 

x 

B 

A 

 
 
 
 
 
 
 
 
 
 

Find the equation of the perpendicular bisector of AB.      (5)  
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5. Two functions  f  and  g  are defined on the set of real numbers as follows : 
 

                   )8()(,28)( 2
1 +=−= xxgxxf .       

 
 

) (a) Evaluate    .          (1) ( )2(gf
 

(b) Find an expression , in its simplest form,  for   ( )g f x( )  .     (2)  
 

(c) Hence prove that     =  f x−1 ( ) ( )[ ])(2
1 xfg  .      (3)  

 
 
 

 
 
6. The circle below, centre C, has as its equation  . 01910422 =+−−+ yxyx
 M(1,3) is the mid-point of the chord AB. 
 

o 

y 

x 

C 

M(1,3) 

B 

A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(a) Write down the coordinates of C, the centre of the circle.     (1) 
 

 (b) Show that the equation of the chord AB can be written as  yx 27 −= .   (3) 
 

 (c) Hence find algebraically the coordinates of A and B.     
 (4) 
 
 

 
 
7. Triangle ABC has as its vertices A(7,2,5), B(1,0,-1) and C(7,-3,8) as shown. 
  

 P is a point on side BC. 
 
 (a) Establish the coordinates of  P given  

that BP = 2PC.          (3) 
 
 (b) Hence show that AP is perpendicular to BC.       (3) 

P 

C(7,-3,8) 

B(1,0,-1)  

A(7,2,5) 
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8. A radioactive substance decays according to the formula   t

ot MM 007020 ⋅−=  ,  where   
M o   is the intitial mass of the substance,    is the mass remaining after  t  years.  

           
Mt

 Calculate , to the nearest year, how long a sample would take to decay  
to half  its original mass.          (4)

     
 
 
 
 
9. Part of the graph of the curve   is shown in the diagram. )65( 2 +−= xxxy
 

 The tangent to the curve at the point where 1=x is also shown. 
 
 

)65( 2 +−= xxxy

 y 
 
 
 
 
 
 
 
 

o  x 1 
 
 
 
 
 
 

(a) Find the equation of the tangent to the curve at the point where .   (4) 1=x 
 
 (b) Show that this tangent also passes through one of the points where the curve 
  crosses the x-axis.          (2) 
 
 
 
 
 
 [ END OF QUESTION PAPER ] 
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Higher Mathematics  Practice Exam F  Marking Scheme   -   Paper 1 
 
 
 
1.       ans:  p = -3 , q = 8 : x = 4 5 marks        •
 

  Setting up synth. division 1•
  Obtaining first equation 2•
  Obtaining second equation 3•
 4  Solving system for p and q  •
  Sub. (say p in quotient) for 35• rd root 
 

 
2. (a)  ans:   statement   1 mark 
 

 1   Explanation  •
  

 (b)  ans:   20    2 marks       
       
 1  Method used •
 2  For calculating limit •
 

 (c)    ans:  U0 = 15    3 marks 
 

 1  For initial equating and finding U• 1 
 2  For recurrence with U• 1 in place 
  For answer 3•
 
3.   ans:  proof      5 marks       
 

 1  For diff. power in first term  •
2•  For diff. θcos  in first term 

  For differentiating second term 3•
 4  For extracting • θθ cossin2  for replace. 

5•  Simplifying to given answer 
 
      

4. ans:       5 marks 163 −= xy
 

 1  For points A & B •
 2  Gradient of AB •
  Gradient of perpendicular 3•
 4  For mid-point of AB •
  For equation of perpen. bisector 5•
 
5. (a)  ans:   2))2(( −=gf   1 mark 
 

   
1

2• 5=+ qp
3• 44 −=+ qp
4• 8,3 =−= qp
5• 0)4)(2(0822 =−+⇒=−− xxxx

4=x

1•

1•
a

bL
−

=
1

2• 20
4

80
40

8
601

8
==

⋅
=

⋅−
=L

1• 173 11 =∴=− UU
2• 860 0 +⋅= U

3•
6

90
60

960 00 =
⋅

=⇒⋅= UU

150 =

1• θcos
2• θsin− θθ sincos4
3• )2sin4 θ−
4• )2sin4()cossin2(2 θθθ −−−
5• θθθ 2sin22sin42sin2 =+−

•
2• 3

1−=AB

3• 3. =perm
4•
5• )6(32 −=− xy

1• 2))2(( −=gf

1• ( )8)28()28( 2
1 +−=− xxg

2• )216())(( 2
1 xxfg −=

x−8

Give 1 mark for each   Illustration(s) for awarding each mark 

 1    1    1      p      -6      q 
 
                
      
             
    
            is missing root   
 
(a)    Because –1 < a < 1  (or equiv.)     
 

(b)       

    
 

(c)     20   
     17   

     9  

           U  
     

 
   .... ( 4 ) ....  

     i.e.  −  
    .... (   
      
     
  
 

 1    A(12,0)   ,   B(0,4) 
    m   

     
   M(6,2) 
    

  
 

(a)       
 
 
(b)    (or equiv.)

  
          =  

•   For answer 
 (b)  ans:  xxfg −= 8))((    2 marks       
      
 1  For substitution •
 2  For simplifying •
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5. (c)    ans:   proof   3 marks 
 

 1  For knowing how to find inverse •
•

3•

•

•
•

3•

•
•

3•
•

•
•

3•

•
•

3•

•
•

3•
•

3+−= xy

•
•

3•
•

•
•

1• xyxffind 28)(1 −=⇒−

2• )8(8 2
1 yxyx −=⇒−=

3• ))](([)8()( 2
1

2
11 xfgxxf =−=−

1•

1• 2
12
35

=
−
−

=cmM

2• 2
1−=ABM

3• )1(3 2
1 −−=− xy

16 +−=− xy
yx 27 −=

1• 01910)27(4)27( 22 =+−−−+− yyyy
2• 040302 =+− yy
3• 2,40)2)(4(5 ==∴−−− yyyy
4• 32,14 ==−== xwhenyxtheny

1• )(2
~~~~
pcbp −=−

2•
~~~

2 bcp +=

3•

1• 0. =BCAP

2•

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









−=
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









−
−

=
9
3

6
,

0
4
2

BCAP

3• .001212 perp∴=++−

1• 500070 ⋅=⋅− t

2• 50log20 0070 ⋅=⋅− t

3• 50log20log0070 ⋅=⋅− t

4• 33
20log

50log0070 =∴
⋅

=⋅ tt

1• )2,1(2)651(1 Ty ∴=+−=

2• 6103 2 +−== xxm
dx
dy

3• 16)1(10)1(3 2 −=+−=m
4• )1(12 −−=− xy

1• 0=y 3=x
•

0)0(3)6)3(53(3 2 ==+−=y

Give 1 mark for each   Illustration(s) for awarding each mark 
 

   To
    2   
     

    
(a)     C(2,5)    

(b)       

      

          
            2   
           
(c)    
  5     
   (   
    
 

(a)     

    3   

    P(5,-2,5) 
(b)    If perp. then   

     

     
 

    20    
    log   
     

   −   

  
 

      
 
 

(a)      

       

      
        
various methods ........ 
(b)    When   then     
 2    Sub x = 3 in equ. of curve 
            
      

 2  For finding inverse 
  For final statement (equating) 
 

6. (a)  ans:   C(2,5)   1 mark 
 

 1   For answer 
 

(b)  ans:   proof   3 marks 
 

 1   For gradient of CM  
 2  For perp. gradient of chord AB 
  For equ. of chord and rearranging 
 

 (c)  ans:   A(-1,4)  ,  B(3,2)   4 marks 
 

 1  For attempting to solve a system 
 2  For expanding and simplifying 
  For factorising and finding y coords. 
 4  For completing points 
 
7. (a)  ans:   P(5,-2,5)   3 marks 
 

 1  For initial vector algebra    
 2    For simplification 
  Answer 
 

   
   (b)  ans:   proof   3 marks 
 1     Scalar product statement (or implied) 
 2    For vectors in component form 
     Scalar product calculation to zero 

 
 
 

 
 

8.   ans:   33 years   4 marks 
 

 1  For solving to 0.5      
 2  For taking logs              
  For releasing the power 
 4  calculation to answer 
 

  
 
 
 

9. (a)  ans:      4 marks 
 

 1   Completing point of tangency 
 2  Differentiating to find m 
  Finding gradient of tangent 
 4  Point + m in equation 
 

 (b)  ans:   proof   2 marks 
 

 1  Finding where tan. cuts x-axis 
 2  Showing that point satisfies equation  
  

Total  51 marks 



 
 
 
 
 
 
 

 Higher Mathematics - Practice Examination F 
 
 Please note …  the format of this practice examination is the 

same as the current format. The paper timings are the same, 
however, there are some differences in the marks allocated. 
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FORMULAE  LIST    
 
 
The equation     represents a circle centre  02222 =++++ cfygxyx ( , )− −g f   and radius 

( )g f c2 2+ − . 
 
 
The equation      represents a circle centre  ( a , b )  and radius  r. ( ) ( )x a y b r− + − =2 2 2

 
 
Scalar Product: a b a b a b. cos , .= θ θwhere is the angle between and  
 
   or 

   a b. = a b a b a b where a
a
a
a

and b
b
b
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Trigonometric formulae: 

 
 
Table of standard derivatives: 
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ax a ax
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Table of standard integrals: 
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 All questions should be attempted
 
 
 
1. Triangle ABC has vertices A(5,3), B(-3,7) and C(-6,-8) as shown. 
 

 The altitude through B meets AC at P. 
 

o

y

x 
D

P 

B(-3,7) 

A(5,3) 

 
 
 
 
 
 
 
 
 
 
 
 C(-6,-8) 
 

(a) Find the equation of side AC and the equation of the altitude BP.    (4)  
 
 (b) Hence find the coordinates of P.        (3) 
 

(c) BP is produced in such a way that PD = 2
1 BP. Establish the coordinates of D.  (1)  

 
 

.

(d) By considering gradients, calculate the size of angle DCP to the nearest degree.  (3) 
 
 
 
 
 
2. Solve algebraically the equation 
 
        (5) 3600,022cos3sin <≤=+− xxx oo

 
 
 
 
 
3. Two functions are defined as  )1)(2()( ++= xxxf  and  )2()( −= xxxg . 
 
 )(a) Given that   ,  show clearly that  .  (3) ( )()( xgfxh = 2674)( 234 +−+−= xxxxxh
 

(b) Hence solve the equation 0)( =xh  showing that it has, in fact, only  
  one real root.           (4) 
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4. Three wheels are positioned in such a way that  

their centres are collinear. 
 

When placed on a set of rectangular axes the equations of  
the two larger circles are   
 

0121622 =+++ yxyx  and  ( , as shown. 100)4()16 22 =−+− yx
 

 
 

012 =+ yx

)16( 2−xC2

C1 

o 

y 

x 

 
 
 
 100)4( 2 =−+ y

 
 
 
 
 
 
 
 

1622 ++ yx 
 
 
 
 

 (a
 
 (b

 
 (c
  
 
 
 
 
 
5. Tw

 
(a

 
 (b
  
 
 
 
 

 Pegasys
) Write down the coordinates of the two centres C1 and C2.     (2) 

) Calculate the radii of the two larger circles and the distance between the 
two centres C1 and C2.         (4) 

k

) Hence establish the centre and radius of the small circle and write 
down its equation.          (3) 

o vectors are defined as   F i j1 2 2= + −~ ~ ~     and   ~3
~

2~2 kjipF +−= . 

) Given that these two vectors have the same magnitude, find the  
value of p, where p > 0.         (3) 

) Hence calculate the angle between these two vectors, giving your answer 
correct to one decimal place.         (3) 

 2005 



 
 
6. A function is defined as  ( )3)( −= xxxf  , where only the positive value of x  is 
 taken for each value of . 0>x
 

 Part of the graph of  )(xfy =  is shown below. 
        
 

(= xxy

R 

P 

o 

y 

x 

 
 
 

)3−   
 
 
 
 
 
 
 
 

(a) Find the coordinates of the turning point at P and the root at R.    (6)  
 
 (b) Hence calculate the shaded area below giving your  

answer correct to 2 decimal places. 
 
 
 
 
 
 
 
 
 
 
              (5) 

( )3−= xxy

R 

P 

o 

y 

x 

 
 
 
     R  

d

x

 
7. Triangle PQR is right-angled at Q. 
 

 The hypotenuse is d units long and 
angle QPR = x radians. P Q  
 
(a) Explain why  PQ =   and  QR =   units long.     (2) xd cos xd sin

 
(b) Hence show that the perimeter (P) of the triangle can be expressed in the  

  form 
    )(cos2 4

π−+= xddP        (7) 
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8. In the diagram below PQRS is a square of side 2x cm. 
 
 A straight line OA, measuring 4 cm, has been drawn in such a way that A lies at the 
 centre of the square and OA is parallel to PS. 
 
 
 

2 x O 
4 cm

A 

S 

Q R 

P 2 x 
 
 
 
 
 
 
 
 
 
 
 

(a) Show that  OP2 = .        (4) 1682 2 +− xx 
 

(b) Hence, by completing the square, or otherwise, find  x  for which the length   
of  OP is at a minimum and state the minimum length of  OP.    (4) 

 
 
 
 
 

[ END OF QUESTION PAPER ]  
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Higher Mathematics  Practice Exam F  Marking Scheme   -   Paper 2 
 
 
 
1. (a)  ans:   4 marks        4,2 +−=−= xyxy 83 +
 

 1  For gradient of AC •
 2  For equation of AC •
  For finding gradient of altitude 3•
   

4

2

1• 1
65

=
+

=AC

2• )5(13 −=− xy
3• 1−=altm
4• )3(17 +−=− xy

1• 42 +−=− xx
2• 36 =⇒= xx
3• 123 =−=y

1• 3366 ↓∴→↓

1• o451tan1 1 ==∴= − θAC

2 o62650tan50
66
82 1 ⋅=⋅∴⋅=

+
+−

= −
CD

3• o18626 =⋅−

1• 02)sin21(3 2 =+−− xx
2• 01sinsin2 =−+ xx
3• 2

1
3
1 sin −== xorx

4• oo 5160,5 ⋅⋅
5• oo 330,210

1• xxxgxxxf 2)(,23)( 22 −=++=
2• 2)2(3)2()( 222 +−+−= xxxxx
3• 26344)( 2234 +−++−= xxxxxx
1•

2•

3• 222 +− xx
4• ∴−=− 442 ac

1•
2•

1• 101000)6()8( 22 ==−−+−=

2• 10100 ==

3• .......)( 2
12 xxd −=

4• 26676 ==

Give 1 mark for each   Illustration(s) for awarding each mark 

•  For equation of altitude 
 (b)  ans:   P(3,1)   3 marks  
 

 1  Knowing to solve a system •
 2  Finding first coordinate •
      Finding second coord. 3•
 

 (c)  ans:  D(6,-2)   1 mark 
 
  Answer 1•
 

 (d)  ans:  18     3 marks o

 

     For knowing and using 1• m=θtan  
          For angle between CD and horoz.     2•
      For 453• o and subtraction to ans. 
 
2.       ans: {  5 marks }330,210,5160,519 ⋅⋅
 

 1•  For correct substitution  
2•  For re-arranging to quadratic 

  Factorising to two roots 3•
 4  Two ans. from one root •
  Two ans. from second root 5•
 
 
 

3. (a)  ans:  proof     3 marks       
 

 1  For expanding original functions  •
2•  For correct substitution 

   

3•  For expanding to answer 
 (b)  ans:   x = 1 , proof  4 marks 
 

 1  Knowing to use synthetic division  •
2•  Finding the root  , x = 1 

  Using x = 1 again ! 3•
 4  Showing remaining quotient has no roots •
 
4. (a)  ans:   C1(-8,-6)  ,  C2(16,4) 2 marks        
 

 1  For first centre •
   

•  For second centre 
 (b)  ans:     4 marks  26,10,10 21 === drr

(a)    m  

                
      
             
 
(b)     
       2          
      
 
(c)  →  from P,  D(6,-2) 
 
(d)   m  

       •  m

    45  
 
   sin  
   6   
    sin  . 
    19   
      
 
(a)    
   h
    h    

(b)            1      -4      7      -6      2 
   

     1    1      -4      7      -6      2 
                          1     -3      4      -2 
                 1      -3     4      -2      0 

   1 again leaves quot.  
    for b  no more roots 

          
(a)     C1(-8,-6)  

   C2(16,4)  
 
(b)   r    

  r  

      etc.  

   d   

 

 1  Finding r of C• 1 
 2  Finding r of C• 2 
  For method (dist. form , pyth, etc.) 3•

4•  For correct distance 
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4. (c)    ans:   C3(4,-1) ,  r = 3  3 marks 

         9)1()4( 22 =++− yx
 1  For centre •
 2  For radius •
  For sub. into equ. to answer 3•
 
5. (a)  ans:   p = 2   3 marks 
 
 1   For calculating magnitude of F• 1  
 2  For equating second magnitude •
  Answer 3•
 
 (b)  ans:      3 marks o693 ⋅=θ
 
 1  For scalar product of F• 1 and F2 
 2  For • =θcos  .......... 
  Answer 3•
 

 
6. (a)  ans:   P(1,-2)  ,   R(3,0)  6 marks 
 
 1  Preparing to differentiate •
 2  Knowing to solve deriv. to zero •
  Differentiating 3•
 4  Solving to answer for x coord. of P •
  Finding y coord. of P 5•
  Finding root (coords. of R) 6•
  
 (b)  ans:   Area = 2  units55⋅ 2 5 marks 
 
 1  For setting up correct integral •
 2  For integrating first term •
  Integrating 23• nd term 
 4  Substituting limits •
  Calculations to answer 5•
 

 
7. (a)  ans:   proof   2 marks 
 

 1  For knowing to involve trig ratios •
 2•     

For manipulation 
 (b)  ans:  proof   7 marks 
 

 1  Writing down an expression for P •
2•  Know to involve )cos( α−xk  

  Select expansion and expand  3•
4•  Compare coefficients 

  Find k 5•
  Interpret comparison and find angle 6•
  Manipulation to answer 7•

(c)   Centre must be mid-pt  C3(4,-1) 
  r    

    (  
  or     
 

(a)     

 2    then  (or equiv.) 

    p = 2    

 (b)       •   

    cos    

      
 

(a)    
 2   S.P. when   (stated or impl.)

   (or equivalent) 

     

         3  
     
     x – 3 = 0   ,   x = 3  
 

(b)    A = -    dx  

 2    ............      (or equivalent) 

    .....  (or equivalent) 
  A =  
   A = 
 

(a)   sin ... etc.  
   QR   
 

(b)     
     
    cos  
              =

   k  

     

     

      

1•
2• 32)2026( =÷−=
3• 9)1()4 22 =++− yx

082822 =++−+ yxyx

1• 3)1(22 222
1 =−++=F

• 2F 9322 =++p
3•

1 3224
3
2

2
.

1
2
2

. 21 −−=















−















−
=FF

2•
33

3224
×

−−
=θ

3• o693 ⋅=θ

1• 2
1

2
3

3)( xxxf −=
• 0)( =′ xf

3• 2
1

2
1

2
3

2
3)( −−=′ xxxf

4• )2(0
2

3
2

3 x
x

x
×=−

103 =∴=− xx
5• 2)31(1 −=−=y
6•

1• ∫ 2
1

2
3

3xx −

• 2
5

5
2 x

3• 2
3

2x
4• [ ] [ ]2)3(2)3( 5

2
5
2 2

3
2
5

−−−−
5• 562]61[]3910246[ ⋅=⋅−−⋅−⋅−

1• ⇒= d
ox

2• xdPQandxd cossin ==

1• xdxddP sincos ++=
2• )sin(cos xxddP ++=
3• )cos(sin α−=+ xkxx

αα sinsincoscos xkxk +
4• 1cos,1sin == αα k

5• 211 22 =+=k

6• 41
1
1tan παα =∴==

7• ])(cos2[ 4
π−+= xddP

1 

3 

Illustration(s) for awarding each mark Give 1 mark for each   
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8. (a)    ans:   proof   4 marks 

 
 1   For attempting to use pythagoras •
 2  For length x •
  For length (4-x) 3•
 4  For expansion to answer •
 
 (b)    ans:  8OP,2 min ==x   4 marks 

 
 1   For removing common factor  •
 2  Completing the square with  • xx 42 −
  Tidying to final form 3•
 4  Answer for replacement and minimum •
       (discretion for minimum 8 instead of 8 ) 
  

   
   
 
 

1•
• ..........2 +x

3• 2)4( x−+
• 22 816 xxx +−+

1682 2 +− xx

1• 16)4( 2 +− xx
2• 4)2 2 −−x
3• 8)2(2 2 +−x

•

8OPmin =∴

 
(a)   OP2 = a2 + b2   (stated or implied) 
 2   OP2 =   
   OP2 =  .........   
 4   OP2 =    

                =   
 

(b)    2   
    [ ( ]  
    OP2 =    
 4    minimum when  x = 2    

         minimum value of OP2 = 8   
       

 

NB... Pupils may use differentiation to answer this 
         part of the question .... assign marks accordingly.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Total  66 marks 
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