2.4 Equation of the Circle

	At the end of this outcome I should	I can do	Revised
2.4.1	know that the equation of the circle centre (a,b) and radius <i>r</i> is $(x-a)^2 + (y-b)^2 = r^2$		
2.4.2	know that $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre $(-g, -f)$ and radius $\sqrt{(g^2 + f^2 - c)}$, provided $(g^2 + f^2 - c) > 0$		
2.4.3	determine the equation of a circle		
2.4.4	solve problems with the intersection of a line and a circle, and a tangent to a circle The line $x - 3y = k$ is tangent to $x^2 + y^2 - 6x + 8y + 15 = 0$. Find two possible values of k. **		
2.4.5	determine whether two circles touch each other		

N.B. ** indicates Level A/B content